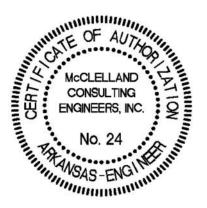
PART 1 - GENERAL

1.01 SOILS REPORT

- A. A geotechnical investigation of the site has been made for use in site grading and foundation design for this Project. This report has been bound herein for information purposes only. Boring logs and test data are for information only. Conditions are not intended as representations or warranties of accuracy or continuity between soil borings. Architect and Owner will not be responsible for interpretations or conclusions drawn from this data by Contractor and advise Contractor to make his own investigations as he deems necessary.
- B. Additional test borings and other exploratory operations may be performed by Contractor, at the Contractor's expense; however, no change in the Contract Sum will be authorized for such additional exploration.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION (Not Applicable)


END OF DOCUMENT

January 21, 2022

ATTN: Mr. Jim Daniel Senior Construction Manager

RE: Geotechnical Investigation Whole Health School of Medicine & Health Sciences Bentonville, Arkansas MCE Project Number: 21-3942

Dear Mr. Daniel:

We are submitting herewith the report for the Geotechnical Investigation on the above-referenced project. We appreciate the opportunity to provide this service to you. If there are any questions regarding the Geotechnical Investigation, please contact us.

Sincerely yours,

Steven J. Head, PE Principal | Geotechnical Department Head

Enclosure: Geotechnical Report

GEOTECHNICAL INVESTIGATION

Whole Health School of Medicine & Health Sciences

Bentonville, Arkansas MCE Project Number 21-3942

Walton Enterprises, LLC 110 NW 2nd Street, Suite 300 Bentonville, Arkansas 72702

January, 2022

1580 East Stearns Street Fayetteville, Arkansas 72703 **mce.us.com** P: (479) 443.2377 | F: (479) 443.9241

GEOTECHNICAL REPORT

Whole Health School of Medicine & Health Sciences

MCE Project Number: 21-3942

Bentonville, Arkansas

FOR WALTON ENTERPRISES 110 NW 2nd Street, Suite 300 Bentonville, Arkansas 72702

Executive Summary

This is a report of the findings of the Geotechnical Investigation relevant to the proposed Whole Health School of Medicine & Health Sciences to be located in Bentonville, Arkansas. This report includes information on surface materials and subsurface conditions in addition to providing recommendations for site preparation, grading, structure foundations, and recommended minimum pavement sections. The significant findings listed below should not be used separately from the further discussion provided in the body of this report.

The following is a summary of significant findings:

- A total of 13 project borings were conducted across the project site as part of this investigation. These boring locations were predetermined and provided by the Client as "Exhibit B".
 - Eight (8) project borings (B-01 through B-05; B-11 through B-13) were conducted outside of the proposed structure footprint.
 - Five (5) project borings (B-06 through B-10) were conducted within the proposed structure footprint.
 - All 13 of the above-referenced project borings were planned to be conducted until encountering materials resulting in auger refusal. These refusal materials were encountered at depths ranging from 23.5 feet to 45 feet below the existing surface elevations. More information pertaining to these materials can be found in the Site Geology and the Rock Excavation sections of this report.
- The encountered surface materials (Stratum I) across the site include silty surface topsoil, coarse-aggregate base, and asphalt materials. The thickness of the encountered surface materials ranged from two (2) to six (6) inches.
- Fine-grained and coarse-grained soils were encountered prior to auger refusal materials.
 - Stratum II fine-grained soils included both low-plasticity and high-plasticity clays with varying amounts of sands and gravels.
 - Stratum III coarse-grained soils included multiple types of sands and gravel materials with varying gradations.
- Groundwater was not encountered by any project borings. However, the presence of perched groundwater is common in the project area; particularly above hard clays and in-situ rock materials.
- It is our recommendation based on the assumed structural loading and data collected during this investigation that either rammed aggregate piers (RAPs) or drilled piers should be considered for foundation support of the proposed structure. Further details regarding both options may be found in the body of this report.

- At the time of this report, lateral loading had not been finalized by the Design Team. We expect to issue an Addendum document between 70% Design Development (DD) and 100% DD submittals that provides LPile analysis and lateral loading recommendations, should drilled piers be the preferred foundation type. This analysis would be provided as a separate agreement beyond the current project scope covered by this Geotechnical Report.
- It is anticipated that light, standard, and heavy-duty pavement sections will be utilized throughout the project site, constructed of both rigid concrete and flexible asphalt materials. Recommendations for these sections can be found in Table 7 on page 14 of this report.

Table of Contents

Executive Summary	i
Introduction	1
Site Description	1
Project Description	1
Field Investigation	2
Table 1: Project Borings – Depths and Elevations	2
Laboratory Testing	3
Table 2: Laboratory Test Method Designations	3
USDA Soil Types & Map	3
Figure 1: USDA Soil Survey Report Image	4
Site Geology	4
Figure 2: USGS Image and Formation Key.	5
IBC Site Classification	5
On-Site Soil Stratum Summary	5
Stratum I – Surface Materials	5
Stratum II – Fine-Grained Subgrade Materials	6
Stratum III – Coarse-Grained Subgrade Materials	6
Stratum IV – Cherty Limestone Shelf (Boone Formation)	6
Stratum V – Consistent Cherty Limestone (Boone Formation)	7
Engineer's Analysis and Recommendations	7
Site Preparation and Grading	7
Subgrade Verification	8
General Foundation Recommendations	8
Subgrade Improvement – Rammed Aggregate Piers (RAPs)	8
Shallow Foundation Recommendations	9
Deep Foundation Recommendations – Drilled Piers	10
Table 3: Anticipated Drilled Pier Depths and Elevations	11
Groundwater – Site Dewatering	11
Rock Excavation	12
Table 4: Rock Coring – Depths and Strengths	12
Building Slab-on-Grade	12
Site Retaining Structures – Lateral Earth Pressures	12
Table 5: Lateral Earth Pressures	13
Select Fill Material	13
Table 6: Compaction Requirements	13
Paved Parking and Driveway Areas	13
Minimum Project Pavement Recommendations	14
Table 7: Minimum Recommended Project Pavement Sections	14
Construction Materials Testing and Special Inspections	14
Limitations and Reserved Rights	15
Appendix A: Boring Layout	16
Appendix B: Boring Logs	17
Appendix C: Laboratory Test Results	18
Appendix D: Subsurface Diagrams	19

Introduction

A geotechnical investigation of subsurface soil and rock conditions was conducted by McClelland Consulting Engineers, Inc. (MCE) for the proposed Whole Health School of Medicine & Health Sciences to be located in Bentonville, Arkansas. The investigation was requested and authorized by Mr. Jim Daniel, Senior Construction Manager with Walton Enterprises, to investigate subsurface conditions at the project site and to prepare recommendations for site preparation and grading operations, foundation and pavement recommendations, and excavation considerations for the planned development.

Site Description

The proposed project site is located on the west side of NE J Street in Bentonville, Arkansas. Specifically, the site is located west of the intersection of NE J Street and NE 10th Street. We understand that the proposed project site is comprised of three (3) individual parcels with the following Tax IDs: 01-00349-000, 01-05321-000, and 01-5320-000. All combined, the three (3) parcels are understood to encompass approximately 14.4 acres, more or less.

Based on information gathered within the provided Exhibit B and observations made during the investigation, it was noted that all three (3) parcels contain existing developments. The existing developments appear to primarily be single-family residential structures as well as their associated outbuildings and pavement improvements.

In addition to the aforementioned existing developments, onsite vegetation was noted to include grass, shrubs, and mature trees. The majority of the mature trees are concentrated in the eastern and western portions of the project site.

From NE J Street, the site exhibits a gentle slope from the west down to the east. Topographical survey data was not provided as part of the RFP package; however, MCE anticipates that the maximum grade differentials across the site are on the order of 28 feet. Much less variance in topography exists within the planned structure footprint.

Project Description

We understand that the project scope includes the construction of a new three (3) – story medical school building, with an additional story of underground parking, surface parking, and additional pavement improvements.

New Medical School Building

The proposed new medical school structure is understood to encompass a structural footprint of 120,000 square feet and is anticipated to be constructed of structural steel with some concrete and/or mass timber elements. The new structure will include spaces for administration, education, a simulation clinic, and flex areas for meetings and seminars.

Pavement Improvements & Underground Parking

The project pavement improvement areas are anticipated to include access drives, surface parking, underground parking, dumpster pads, and pedestrian walkways.

We anticipate that the vehicular project pavements will be frequently subjected to light passenger vehicles and occasionally subjected to heavier truck traffic. As such, we assume that both flexible asphalt and rigid concrete pavements may be utilized. We anticipate that the design team may consider light-, standard-, and heavy-duty sections for both rigid and flexible pavements.

Pavement improvements for parking are understood to include both surface and underground parking areas. From the RFP document, we understand that the underground parking area will accommodate approximately 115 vehicles utilizing the structure footprint. Finalized project scope and details regarding the underground parking are still being developed at this time, including potential depth below the existing ground elevations. Surface parking areas are understood to accommodate approximately 50 vehicles.

Anticipated Structural Loading & Site Grading

Finalized structural documents and grading plans were not available at the time of preparing this proposal. Through discussion with the structural engineer, it was determined that the maximum column load will not exceed 1,000 kips though smaller loads on the order of 50 kips or less are expected as well. The building's main level is expected to be elevated 60 feet above the existing grade.

Field Investigation

The geotechnical investigation consisted of 13 total project borings. Eight (8) project borings (B-01 through B-05 and B-11 through B-13) were conducted outside of the proposed structure footprint. Five (5) project borings (B-06 through B-10) were conducted within the proposed structure footprint. The boring locations were predetermined and provided within Exhibit B of the RFP document. All project borings were conducted until materials resulting in auger refusal were encountered.

Utilizing water-based coring techniques, project borings B-06 and B-09 were advanced an additional 18 feet and 10 feet beyond the encountered auger refusal materials; respectively.

The majority of the main-structure borings (B-07, B-08, and B-10), and some of the external borings (B-03 and B-04), were conducted with a CME 45B truck-mounted drill rig utilizing four (4) inch solid stem augers. The rest of the borings (B-01, B-02, B-05, B-06, B-09, and B-11 through B-13) were conducted with a Diedrich D-50 Turbo track-mounted drill rig utilizing hollow stem augers. Soil samples were obtained at the depths indicated on the boring logs by the use of a two (2) inch diameter split-spoon sampler. The split-spoon sampler was driven by blows from a 140-pound automatic hammer dropped from a fixed height of 30 inches. The specific locations of the referenced borings are provided in Appendix A on Plate 1.

The number of blows required to drive the split-spoon sampler the final 12 inches of an 18-inch drive, or portion thereof, is referred to as the Standard Penetration value, N, and is recorded on the boring logs in units of blows-per-foot. Final drilled depths are shown as the depths achieved by the core barrel. The field tests performed outside of the Standard Penetration Test included visual soil classifications, groundwater observations, rock recovery (REC), and rock quality designation (RQD).

Groundwater was not encountered by any of the project borings. Long-term groundwater monitoring was not included as part of our scope of work. Table 1 below shows the surface material thickness, depths, and elevations that were achieved by the conducted project borings. A key to the terms and symbols used on the boring logs is also presented in Appendix B on Plate 15.

The visual soil and rock classifications are given on the boring logs. The boring logs may be referenced in Appendix B on Plates 2 through 14. Subsurface Diagrams featuring the elevations of each soil/rock stratum in relation to boring location may be referenced in Appendix D on Plates 19 through 24.

	oject Borings –					1
Boring Number	Surface Material	Surface Material Thickness (in)	Boring Elevation (ft)	Refusal Depth (ft)	Total Drilled Depth (ft)	End of Boring Elevation (ft)
B-01	Topsoil	4.0	1284.0	28.5	28.5	1255.5
B-02	Topsoil	2.0	1282.5	26.0	26.0	1256.5
B-03	Topsoil	3.0	1281.5	45.0	45.0	1236.5
B-04	Aggregate	6.0	1280.0	34.5	34.5	1245.5
B-05	Topsoil	4.0	1279.5	37.0	37.0	1242.5
B-06	Topsoil	3.0	1283.5	23.5	41.5	1242.0
B-07	Asphalt	2.0	1283.0	24.5	24.5	1258.5
B-08	Asphalt	5.0	1282.5	23.5	23.5	1259.0
B-09	Asphalt	7.0	1281.0	37.5	47.5	1233.5
B-10	Asphalt	6.0	1281.0	41.5	41.5	1239.5
B-11	Topsoil	5.0	1282.5	28.5	28.5	1254.0
B-12	Topsoil	4.0	1281.5	28.5	28.5	1253.0

Table 1: Project Borings – Depths and Elevations

Notes: Elevations shown in Table 1 are rounded to the nearest 0.5 feet, based on the *Boundary & Topographic* survey; provided by Bates & Associates, Inc.

Surface material thicknesses are rounded to the nearest 1 inch

Laboratory Testing

Laboratory testing was performed on all soil/rock samples recovered from the project borings. The laboratory testing was directed at determining the engineering properties of the project soil/rock strata. The laboratory testing was conducted in accordance with the American Society for Testing and Materials (ASTM) designations. The tests performed on samples from the borings included moisture content, Atterberg Limits, sieve analyses, and unconfined compressive strength.

The natural soil moisture content was determined for each of the soil samples to provide a moisture profile for each project boring. Atterberg Limits tests (liquid and plastic limits) and sieve analyses were performed on selected samples to determine the classification of the soils and to help evaluate the volume-change characteristics of each soil stratum. The unconfined compressive strength of selected rock core samples was recorded in an effort to determine the in-situ strength of the encountered rock strata. Results of laboratory testing are provided on the boring logs and the Laboratory Test Results Summary in Appendix C on Plates 16 through 18. A key to the terms and symbols used on the boring logs is also presented in Appendix B on Plate 15. Table 2 below shows the relevant test method designations performed on the soil samples.

Test Designation	Test Method
ASTM D2488	Standard Practice for Description and Identification of Soils (Visual)
ASTM D2487	Standard Practice for Classification of Soils for Engineering Purposes (USCS)
ASTM D2216	Standard Test Method for Lab Determination of Water Content of Soil
ASTM D6913	Standard Test Method for Particle-Size Distribution of Soils Using Sieve Analysis
ASTM D4318	Standard Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils
ASTM D7263	Standard Test Method for Lab Determination of Density and Unit Weight
ASTM D2166	Standard Test Method for Unconfined Compressive Strength of Cohesive Soils
ASTM D7012	Standard Test Methods for Compressive Strength and Elastic Moduli of Intact Rock Core Speciments

Table 2: Laboratory Test Method Designations

USDA Soil Types & Map

The following soil types exist in the project area according to current United States Department of Agriculture (USDA) soil maps, with descriptions from the Natural Resources Conservation Service (NRCS). Figure 1 on the following page provides imagery of the approximate site location and how it relates to the existing soil types.

The project site is located in central Benton County in Northwest Arkansas. The following soil types exist in the project area according to current USDA soil maps:

- Captina Silt Loam (CnB) majority of the project area.
 - The Captina series consists of moderately shallow, moderately well-drained, moderately permeable soils on summits and interfluves. These soils formed in reworked loess over pedisediment over residuum weathered from cherty limestone. Slopes range from 1.0 to 3.0 percent.
- Nixa Very Gravelly Silt Loam (NfC) western portion of the project area.
 - The Nixa series consists of moderately shallow, moderately well-drained, lowly permeable soils on hillslopes. These soils formed in slope alluvium over pedisediment over residuum weathered from limestone. Slopes range from 3.0 to 8.0 percent.
- Noark Very Gravelly Silt Loam (NoF) southwestern extents of the project area.
 - The Noark series consists of very deep, well-drained, moderately permeable soils on hillslopes. These soils formed in slope alluvium over residuum weathered from limestone. Slopes range from 20.0 to 40.0 percent.
- Tonti Gravelly Silt Loam (TsC) north-central extents of the project area.
 - The Tonti series consists of moderately deep, moderately well-drained, lowly permeable soils on summits, hills, and interfluves. These soils formed in loamy residuum weathered from cherty limestone. Slopes range from 3.0 to 8.0 percent.

The above-referenced soils in the project area have moderate-to-high potentials for corrosion of concrete and steel materials used in construction. An aerial image of the project area produced by the USDA Soil Survey is presented in Figure 1 below.

Figure 1: USDA Soil Survey Report Image. The image was produced by the United States Department of Agriculture. The red outline is the approximate project extent.

Site Geology

According to maps and literature published by the United States Geological Survey and the Arkansas Geological Survey, the project area is underlain by the Mississippian Age Boone Formation. The Boone Formation commonly consists of light gray to gray, fine-to-coarse-grained fossiliferous limestone interbedded with chert. Some sections may be predominantly limestone or chert. The chert in the Boone Formation tends to be dark in color in the lower part of the sequence and light in the upper part. The quantity and quality of the chert is known to vary considerably both vertically and horizontally with the formation.

Residual soils weathered from the Boone Formation are commonly referred to as "Hillside Material" within the region. The encountered subgrade materials beneath the project site are indicative of residual Boone Soils. The rock recovered from the coring operations of this investigation are also indicative of the Boone Formation. The thickness of the Boone Formation is typically reported at 300 to 350 feet.

The Boone Formation is well known for dissolutional features such as sinkholes, caves, and enlarged fissures according to Information Circular 36 produced by the Arkansas Geological Survey. The USGS imagery and formation key are presented in Figure 2 on the following page.

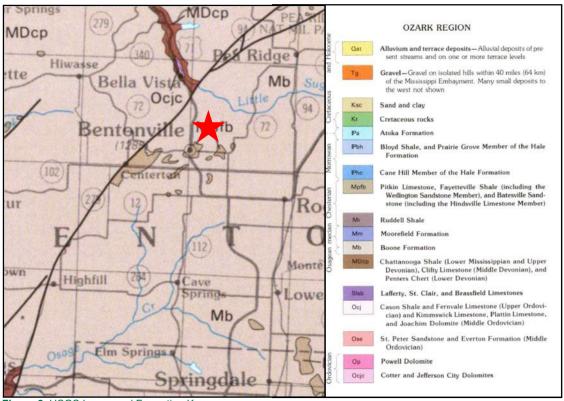


Figure 2: USGS Image and Formation Key.

This information was produced by the Arkansas Geological Survey and the United States Geological Survey. The red star is the approximate project location.

IBC Site Classification

The proposed development area is recommended to be assigned as a Risk Category III according to Table 1604.5 of the 2021 International Building Code (IBC). The site seismic classification determination may utilize spectral response accelerations S_{DS} and S_{D1} of **0.133g** and **0.089g** respectively, with reference to Section 1613 of the 2021 IBC, and current Applied Technology Council (ATC) information based on Site Class C for the soil profile within the proposed Whole Health School of Medicine & Health Sciences campus.

On-Site Soil Stratum Summary

The subsurface soil conditions at the site are described as below:

Stratum I – Surface Materials

The encountered surface materials across the site include silty surface topsoil, coarse-aggregate base, and asphalt materials. The thickness of the encountered topsoil material ranged from three (3) to five (5) inches. The coarse-aggregate base material was encountered at a thickness of six (6) inches. The thickness of the encountered asphalt material ranged from two (2) to three (3) inches with project borings B-08 through B-10 having an underlying coarse-aggregate base ranging from two (2) to four (4) inches in thickness. Reported thicknesses are only valid for the actual boring location and may vary in unexplored portions of the project area.

Observations made while onsite indicated the existence of additional surface materials including landscaped rock features and rigid concrete pavements around existing developments to the southwest, north, and east of the proposed building location. Based on the findings and onsite observations, the Contractor should anticipate an average stripping depth of one (1) foot across the project site. Additional excavation will likely be required to remove all foundation elements from existing structures and organic material from the densely vegetated areas of the project site. All deleterious materials including roots and organics, foundation elements, building materials, etc. should be removed full-depth from the project site prior to construction.

Stratum II – Fine-Grained Subgrade Materials

The fine-grained subgrade materials that make up Stratum II exhibited low to high plasticity characteristics. The finegrained subgrade materials include Lean Clay (CL), Sandy Lean Clay (CL), Lean Clay with Sand (CL), Sandy Lean Clay with Gravel (CL), Sandy Fat Clay (CH), and Fat Clay with Sand (CH). The Stratum II materials contained varying amounts and gradations of sand and gravel.

The CL materials were encountered as light brown to brown, reddish-brown, reddish-brown to brown, dark reddish-brown, and dark brown in color. Consistency values ranged from medium-stiff to hard with corresponding N-Values from 4 to greater than 50. Soil moisture content for the CL materials ranged from 7.9 to 24.0 percent based on ASTM D2216. The CL soils are considered moisture-sensitive and may lose significant strength upon saturation and/or disturbance.

The CH materials were encountered as light reddish-brown and dark reddish-brown in color. Consistency values ranged from stiff to very stiff with corresponding N-Values ranging from 9 to 27. Soil moisture content for the CH materials was found to range from 11.9 to 24.2 percent. The CH soils are considered moisture-sensitive and may lose significant strength upon saturation and/or disturbance.

Stratum III - Coarse-Grained Subgrade Materials

The coarse-grained subgrade materials that make up Stratum III exhibited negligible to high plasticity characteristics. The coarse-grained subgrade materials include Clayey Sand (SC), Clayey Sand with Gravel (SC), Clayey Gravel with Sand (GC), and Silty Gravel with Sand (GM). The Stratum III materials contained varying amounts and gradations of sand and gravel.

The SC materials were encountered as reddish-brown, reddish-gray, reddish-orange to reddish-brown in color. Consistency values ranged from medium-dense to very dense with corresponding N-Values ranging from 19 to greater than 50. Soil moisture content for the SC materials was found to range from 3.7 to 26.7 percent.

The GC materials were encountered as reddish-brown, light reddish-brown, and dark reddish-brown in color. Consistency values ranged from loose to very dense with corresponding N-values ranging from 4 to greater than 50. Soil moisture content for the GC materials ranged from 7.9 to 35.1 percent.

The GM materials were encountered as light reddish-brown in color. Consistency values ranged from very loose to medium-dense with corresponding N-Values ranging from 3 to 16. Soil moisture content for the GM materials ranged from 11.8 to 19.4 percent. The GM soils are considered moisture-sensitive and may lose significant strength upon saturation and/or disturbance.

Stratum IV – Cherty Limestone Shelf (Boone Formation)

Stratum IV materials were encountered by project boring B-06 at an approximate depth of 28.5 feet below the existing surface elevation and include light gray limestone with interbedded chert. Approximately five (5) feet of Stratum IV materials were encountered prior to exposing a layer of low-consistency residual materials that resulted in low Rock-Quality Designation (RQD) and low recovery (REC). The low-consistency materials encountered beneath the Stratum IV limestone shelf are referenced as a "void" on the boring log for B-06 due to the relatively low consistency compared to the overlying rock materials. Although a "void" was not present in boring B-09, the recorded RQD, REC, and compressive strength of the sampled rock material is indicative of Stratum IV material as described by this section.

If drilled piers are the preferred foundation type, the presence of non-rock layers beneath the bottom-of-pier elevations may create inadequate conditions from which to support the drilled piers if a sufficient thickness of Stratum IV materials is not left intact. This recommendation is based on the assumed maximum loading conditions. The recorded compressive strength of the Stratum IV material is comparable to that of the Stratum V samples with an average compressive strength of 1,530 kips per square foot (ksf). However, the distinction between Stratum IV and Stratum V is due to the dissolution features (residual soils) encountered at a depth of 31.5 feet and the resulting low RQD of Core Run #2 in boring B-06. Based on the continued coring operations conducted at project boring B-06, consistent rock material was encountered at an approximate depth of 36.5 feet below the existing surface elevation; directly beneath the encountered void. This may be referenced in the below *Stratum V – Consistent Cherty Limestone (Boone Formation)* description.

Stratum V – Consistent Cherty Limestone (Boone Formation)

Stratum V materials include light gray limestone with interbedded chert and high recovery and RQD values. These materials were determined to have an average unconfined compressive strength of 2,426 ksf. The competent, consistent limestone material was encountered between 36.5 and 37.5 feet below the existing surface elevations of the relevant project borings.

As discussed in later sections of this report, probing operations are highly recommended to be utilized during the installation of drilled piers (if relevant) to confirm the consistency of the intended end-bearing material.

Engineer's Analysis and Recommendations

At the time of preparing this report, it is our understanding that the planned Whole Health School of Medicine & Health Sciences will include the construction of an approximately 120,000 sf, three (3) - story medical school building above an underground parking area with an approximate 115-vehicle capacity. Additional pavement improvements are anticipated to include a surface parking area with an approximate 50-vehicle capacity, pedestrian walkways, access drives, and dumpster pads. It is our current understanding that maximum column loads for the planned building will not exceed 1,000 kips. However, smaller loads up to 50 kips are expected as well.

Due to the anticipated loading conditions, two (2) potential foundation recommendations have been provided within this report: a rammed aggregate pier (RAP) subgrade improvement system with shallow foundations, and a deep foundation recommendation consisting of drilled piers. It is our initial recommendation that RAPs would be preferred due to the higher cost of drilled piers associated with the depths to consistent rock encountered across the project site. Should the elevation of the below-grade parking area substantially reduce the depth to competent, consistent rock, the drilled-pier system may become more financially beneficial.

Site Preparation and Grading

The existing surface materials encountered during our investigation consisted of grass, roots, and organics, coarseaggregate, and flexible asphalt materials with an underlying coarse-aggregate layer in the upper two (2) to six (6) inches below the existing surface elevations. Rigid concrete materials and landscaped rock features were observed within the project area, around existing residential developments.

It is our recommendation that all surface materials including vegetation (grass, roots, etc.), asphalt, concrete, and other materials that may exist in the project area be removed full-depth from beneath all building and site improvement/pavement area dimensions. This includes existing foundations and site developments. An average stripping depth of two (2) feet should be anticipated by the Contractor for initial site grading, with additional undercut required in isolated areas, particularly in areas around project borings B-01 and B-02 and within the footprints of existing onsite developments. These undercuts may be on the order of three (3) feet or more.

Three (3) parcels within the proposed project site contain existing developments. The existing developments are primarily single-family residential structures along with their associated outbuildings and pavement improvements. *Although not encountered by the terminal depths of any project borings, it is imperative that all remnants of the previous structure(s) be removed full-depth prior to the placement of select fill, new concrete, and structural elements.*

Additional care should be taken by the Contractor to prevent excessive saturation and exposed Stratum II and/or Stratum III subgrade soils, as these materials may potentially lose significant strength upon saturation. This can be achieved by providing positive drainage during construction and covering with select fill material soon after excavation, where applicable. The onsite subgrade soils will be especially susceptible to reduced shear strengths if construction occurs during historically wet portions of the calendar year.

Excavated slopes during construction should be benched or sloped to provide a minimum two-to-one horizontal-to-vertical (2H:1V) ratio. Construction slopes steeper than recommended may be unstable, particularly when introduced to moisture increases during precipitation events. Temporary shoring measures should be anticipated to stabilize construction slopes that are steeper than 2H:1V.

Subgrade Verification

Following stripping and initial grading and prior to the placement of select fill, all improvement areas should be proof-rolled with a fully-loaded tandem-axle dump truck weighing approximately 60,000 pounds, or equivalent construction equipment. The proof-rolling should be observed by the Geotechnical Engineer or his/her representative to verify stable subgrade conditions. Any soft and/or yielding subgrade areas encountered should be repaired by undercutting and backfilling with select fill material.

It is highly recommended that proof-rolling occur after topsoil stripping/initial grading and before fill placement. Based on the data in the boring logs, it is our anticipation that the soils beneath the proposed structure and associated parking areas will be moderately stable at approximately two (2) feet below the existing surface elevations.

Isolated areas may require additional undercutting on the order of 12 to 18 inches depending on site conditions at the time of construction.

The frequency of these areas and the total depth of required undercut may increase based on site conditions at the time of earthwork operations, particularly if construction occurs during a wet weather pattern. MCE recommends that the Contractor anticipates a minimum of 24 inches of select fill material to provide a stable and weather-resistant building pad in both the main structure and parking garage areas, from which to conduct construction activities during the foundation and slab-on-grade project sequences.

General Foundation Recommendations

The building foundations relevant to the planned Whole Health School of Medicine & Health Sciences structure and associated parking features should be sized to meet three (3) conditions. First, the maximum stresses imposed on the foundation strata should not exceed the allowable bearing pressures as determined from the shear strength properties of the bearing strata. Secondly, foundations should be designed to limit the maximum anticipated total and differential settlement to magnitudes that will neither damage nor impair the use of the structures. Finally, the foundation systems must also be designed to resist the anticipated lateral or overturning forces during the most critical loading conditions, including earthquake loadings.

All foundation excavations should be cleaned of loose soil, debris, and water prior to the placement of reinforcing elements and concrete. Foundation excavations should be observed by the Geotechnical Engineer or his/her representative to verify the stability of exposed soils/rock, prior to the placement of fill material, reinforcing elements, or concrete. These factors, as well as additional construction considerations related to the existing soil and ground conditions, were influential in the preparation of the recommendations presented hereinafter.

Subgrade Improvement – Rammed Aggregate Piers (RAPs)

Based on the provided information and assumed loading conditions, the first option to support the new Whole Health School of Medicine & Health Sciences structure and associated parking underground parking structure may be supported by shallow foundations placed on soils improved by a rammed aggregate pier (RAP) system. It is our opinion that RAPs would provide adequate foundation support (based on the current assumed structure loading) and could offer potential cost savings when compared to alternative deep foundation systems such as drilled piers. The recommendation for the RAP system would be aimed at improving the subgrade capacity and conditions within the structure footprint by their installation. The implementation of the RAP system can improve the bearing capacity of otherwise unsuitable subgrade materials so that conventional shallow foundations may be utilized and also reduce the settlement potential for the subgrade soils. The piers are typically constructed by drilling 24 to 30-inch diameter holes to planned terminal depths and backfilling the holes with compacted aggregate. Compaction consolidates the aggregate column and increases lateral stress in the soil matrix.

The system serves to reduce settlement by replacing and reinforcing the relatively loose (compressible) soils in the shallow subgrade material below the planned structure location. The rammed aggregate pier system would provide an additional benefit over drilled pier foundation system in that it would not require temporary or permanent casing elements. The RAP system would provide an advantage over drilled piers in that they would not require additional equipment, such as concrete pump trucks and cranes. The installation of an RAP system is typically more economical and efficient than other deep foundation options, which require achieving a more competent bearing stratum at deeper elevations, with added material costs. It is anticipated that the RAP installation would occur after pad construction (generally two (2) feet of moisture-conditioned and properly compacted select fill material) within the relevant building areas. RAP's may also be required for stabilization beneath any additional site retaining structures, if applicable.

A number of companies capable of the work exist within the region, although Geopier© is the closest provider geographically that is known to design and install the recommended system. The design and performance criteria for these systems are typically provided by the installation contractor. The rammed aggregate piers should be installed to depths and spacing frequencies that improve the proposed structure subgrade areas to provide a minimum net allowable bearing capacity that is sufficient for the project loading. Precise bearing capacity values should be directed by the RAP designer, but a minimum capacity on the order of 6,000 pounds per square foot (psf) can be obtained at the site with an expected settlement range on the order of one (1) inch total long-term and one-half (1/2) inch differential settlement after loading. It is likely that a bearing capacity on the order of 7,000 psf can be achieved, but this should be confirmed with the RAP designer once more finalized structure loading information is available. For rammed aggregate piers that may be in an uplift condition, the initial project design constraints may utilize a maximum uplift capacity of 30 kips per pier. Confirmation of this value should be obtained through the RAP designer. It is likely that the final design uplift value will be in excess of 20 kips per pier. A short-term increase in allowable loadings during seismic and wind events is not recommended at this time.

By providing proper compaction energy, the aggregate piers increase the shear strength of the immediately surrounding soil matrix, which in turn improves the subgrade for an area larger than the actual pier dimensions. Methods of installation that do not provide adequate compaction energy result in placing end-bearing stone columns that extend a vertical load onto deeper bearing strata but do not improve the structure subgrade as intended by the recommendations for this foundation system. A vertically-loaded stone column is not the recommended foundation type and does not provide the same soil improvements as the referenced RAP system.

The RAP installation should be observed continuously by the Geotechnical Engineer or his/her representative. After installation of the rammed aggregate piers and relevant site grading, the structural elements may then be placed on shallow continuous and/or spread foundations that bear on the improved subgrade soils. The shallow foundations should be placed a minimum of two (2) feet below finished exterior ground elevations to protect against frost heave. All foundation excavations should be cleaned of loose soil, debris, and water prior to the placement of reinforcing elements and concrete. Foundation excavation should be observed by the Geotechnical Engineer or his/her representative to verify the stability of exposed soils, prior to placement of fill materials, reinforcing elements, or concrete. Concrete should not be placed on frozen soil.

It is imperative that the Design Team and the RAP designer coordinate regarding planned utility or other excavations that may influence the installed piers or that may be near their zone of influence. Excavations are often possible near the RAP dimensions but should be carefully planned and communicated. Often, cement is added to specific RAPs to prevent loss of aggregate and subgrade competency after excavation. Sometimes the depths of certain RAPs need to be increased, depending on the extent and proximity of the planned excavation.

It is recommended that MCE be present onsite during the installation of the RAP system to ensure compliance with the recommendations above and the intent of the foundation system design.

As previously noted, it is anticipated that a minimum of two (2) feet of select fill material will be required to be placed within the structure footprint to provide a stable working platform and under-slab area.

Shallow Foundation Recommendations

Based on our current understanding of the project scope, anticipated structural loads, and encountered subgrade materials, it is our recommendation that the proposed structure be supported on a conventional shallow foundation system consisting of continuous and individual (spread) footings bearing on the improved subgrade (provided by RAP installation).

The project footings should be excavated so that they may bear on stable subgrade material and placed a minimum of two (2) feet below the finished surface elevations in order to extend below the local frost line. In the unlikely event that soft and/or yielding subgrade areas are discovered within the structure footprint as a result of subgrade verification operations following the RAP installation, those areas should be undercut to stable subgrade materials and backfilled with select fill.

Deep Foundation Recommendations – Drilled Piers

Based on the provided information and assumed loading conditions, we have provided an alternative option to support the new Whole Health School of Medicine & Health Sciences structure and associated underground parking structure including a deep foundation system consisting of grade beams supported on drilled piers. The installation of drilled piers would likely be a tedious process due to the strength and depth of the in-situ rock, as well as the inconsistencies with the upper limestone materials at the project site.

The drilled piers should be founded a minimum of two (2) feet into the Stratum IV or Stratum V Limestone materials (rock socket) to provide the net allowable end bearing capacity referenced below. This recommendation is with the expectation that a minimum pier diameter of 36 inches and a maximum pier diameter of 60 inches will be utilized based on our experience with projects of similar scope in the project area. Drilling operations should expect hard rock drilling to be required to complete the recommended rock sockets. The use of drilling slurries is not recommended at this time. The use of shear rings is not currently anticipated.

At the time of this report, it is our understanding that lateral loadings have not been finalized by the design team. Should lateral loads be present within the project scope and drilled piers are determined to be the desirable foundation type, we will expect to issue an Addendum #1 document between 70% DD and 100% DD submittals that provide LPile analysis and lateral loading recommendations. This analysis would be provided as a separate agreement beyond the current project scope covered by this Geotechnical Report. As such, some socket lengths may be extended by the Addendum document to provide the required lateral support. If the information preceding the Addendum determines that extended rock sockets are not a feasible option for providing adequate lateral support and uplift resistance, the Design Team may elect to utilize rock anchors at the bottom of relevant drilled piers. Should they be implemented, the rock anchors may be designed for ultimate grout-to-ground bond strength of 200 pounds per square inch (psi) when utilizing grout with a design strength of at least 5,000 psi.

The anticipated bottom-of-pier elevations and recommended bearing strata may be referenced in Table 3 on the following page. The drilled piers should be designed for end-bearing support. The final drilled pier design may utilize a net allowable end bearing capacity of 100 ksf for the Stratum IV or Stratum V limestone material, based on the data recorded during this investigation and known characteristics of the rock formation in the project area. The provided allowable bearing pressure provides a minimum factor of safety of 3.0 with regard to the encountered rock material. Factors resulting in the allowable capacity included percent recovery, RQD, and ultimate compressive strength. Drilled piers should have a minimum length-to-diameter ratio of 3L:1D. A short-term increase in allowable loadings during seismic and wind events is not recommended at this time.

The recommended bearing stratum should be verified by the inspection of probe holes drilled beyond bottom-of-pier elevations. Current project budgeting and scheduling should expect that probe holes will be drilled for each pier location to determine the presence of weathered or fractured zones and verify the competency of the intended end-bearing material. The probe holes should be drilled beyond the bottom of the foundations (rock socket) to an additional depth of twice the individual drilled pier diameter (2L:1D) or an additional five (5) feet into competent rock, whichever is greater. The ultimate foundation depth should be a minimum of two (2) feet (rock socket) below any encountered fractured, weathered, or dissolution zones. The actual number of probe holes conducted may vary at the discretion of MCE based on the onsite results of probing operations.

Prior to the placement of concrete at each pier location, the Contractor should make a reasonable effort to remove all water and other deleterious material from the drilled pier excavation. While standing water will not reduce the provided bearing capacities of the referenced limestone material, the increased water-to-cement ratio (W/C) may reduce the compressive strength of the concrete as well as the overall strength of the pier foundation.

In the event that groundwater cannot be adequately removed using conventional pump methods, alternative means such as the tremie method should be utilized to displace the existing groundwater during concrete placement. Concrete should be placed directly down the center of the drilled pier under pressure provided by a pump truck or other means, uninterrupted by reinforcing bars or tie-wires. Although groundwater was not encountered during our investigation, it is our recommendation that the Contractor should plan and budget for the utilization of temporary casing during the installation of drilled piers; particularly due to the anticipated depth to competent end-bearing material.

Drilled piers that may be in an uplift condition may utilize an allowable uplift skin friction value of 500 psf for overburden soils, 3 ksf for any weathered/low-competency rock encountered during probing, and 5 ksf for the competent limestone material. *Skin friction calculations should negate the top two (2) feet of the drilled pier length, regardless of the subgrade material at this depth.*

Total and/or differential foundation settlement under the building structure(s) supported by a drilled pier and grade beam foundation system can be anticipated to be negligible to one-eighth (1/8) inch based on the known loading conditions. Adequate control joints within structure walls should be used to control any settlement that may occur between the foundation piers.

Adequate bearing material should be encountered before beginning the recommended rock socket. This material herein referred to as 'competent', may utilize a net allowable end bearing capacity of 100 ksf for design purposes as previously mentioned. It is imperative to note that hard drilling conditions will be presented by the Stratum IV materials and the results of probing operations may require additional drilling through these materials to achieve the required rock socket.

The competent material is generally described as hard limestone with interbedded chert on the boring logs in Appendix B, and on the Profile of Borings in Appendix D.

Based on our findings, the competent cherty limestone was generally encountered between 26 and 45 feet below the existing surface elevations across the site and extends to greater depths relevant to the current project scope. The elevations at which competent deep foundation bearing material was encountered and the corresponding anticipated bottom of drilled pier elevations are provided in Table 3 below. It should be noted that the estimated drilled pier depths utilize a drilled pier diameter of 36 inches for current reference.

Boring ID	Ground Elevation at Boring Location	Auger Refusal Depth (ft)	Est. Elevation of Consistent Rock	Est. Drilled Pier Depth (ft)	Estimated Drilled Pier Elevation (ft)
B-01	1284.0	28.5	1255.5	30.5	1253.5
B-02	1282.5	26.0	1256.5	28.0	1254.5
B-03	1281.5	45.0	1236.5	47.0	1234.5
B-04	1280.0	34.5	1245.5	36.5	1243.5
B-05	1279.5	37.0	1242.5	39.0	1240.5
B-06	1283.5	23.5	1260.0	25.5	1258.0
B-07	1283.0	24.0	1259.0	26.0	1257.0
B-08	1282.5	23.8	1258.8	25.8	1256.8
B-09	1281.0	37.5	1243.5	39.5	1241.5
B-10	1281.0	41.5	1239.5	43.5	1237.5
B-11	1282.5	28.5	1254.0	30.5	1252.0
B-12	1281.5	28.5	1253.0	30.5	1251.0
B-13	1281.5	37.0	1244.5	39.0	1242.5

Table 3: Anticipated Drilled Pier Depths and Elevations

Elevations shown in Table 3 are rounded to the nearest 0.5 feet, based on the *Boundary & Topographic* survey; provided by Bates & Associates, Inc.

Coring operations at project boring B-06 uncovered a shelf of hard rock, encountered for approximately eight (8) feet, underlain by a five (5) foot layer of non-rock material prior to encountering hard, consistent rock. It is unknown at this time if this condition will be present throughout the project site. Again, we would like to detail the importance of probing a minimum of an additional depth of twice the individual drilled pier diameter (2L:1D) or an additional five (5) feet into competent rock, whichever is greater, beyond the bottom of the rock socket depth.

Groundwater – Site Dewatering

Though groundwater was not encountered by any of the project borings, it is possible that perched groundwater will be encountered during either drilled piers or RAP installation. As water percolates down through the subgrade, it is common for groundwater to "perch" right above hard clays and/or in-situ rock materials. When this situation is encountered during drilling operations, that perched water appears as groundwater. Groundwater observations were made by the drill crew during drilling operations and at the completion of drilling each boring.

Long-term groundwater monitoring was not included in our scope of work. The installation and periodic measurement of monitoring wells would be required to establish seasonal piezometric surfaces below the project site. Building foundations should include perimeter drain systems with a minimum four (4) – inch perforated pipe, drained to daylight or onsite drainage features, but it is not anticipated that the site will require an enveloped waterproofing or dewatering system for the proposed Whole Health School of Medicine & Health Sciences based on the groundwater observations at the time of drilling.

Rock Excavation

It is not anticipated that construction operations will require rock removal techniques (with the exception of drilled pier installation) due to the relatively shallow excavation requirements allowed by the recommended foundation systems compared to the depth at which rock materials were encountered. However, the below-grade parking area may encounter rock material depending on the finalized depth below existing grades and could require the usage of rock removal techniques. Should this be the case, rock removal techniques will likely be required where excavation operations extend beyond auger refusal materials or where N-Values are greater than 50. Refusal materials consisting of limestone with interbedded chert indicative of the Boone Formation were encountered between 23.5 and 45 feet below the existing surface elevations.

The encountered rock materials will be difficult to excavate, particularly in vertical trench excavations, such as project utilities. In this case, excavation operations would require the use of rock removal techniques, such as hammer hoe attachments. Mass excavation of these materials may be more feasible than vertical trench excavation but will likely still require rock removal techniques. As noted previously, drilled pier operations should expect hard rock drilling above the recommended Stratum V end-bearing material to complete the recommended rock sockets.

Boring ID	Sample ID	Sample Depth (ft)	Unit Weight (pcf)	Est. Compressive Strength (tsf)						
B-06	C-01	24	154.6	949.5						
B-06	C-02	30	158.1	959.9						
B-06	C-03	40	156.1	1213.2						
B-09	C-01	38.5	158.7	533.9						
B-09	C-02	46	162.4	618.5						

Table 4: Rock Coring – Depths and Ultimate Strengths

The encountered in-situ rock materials were observed as being a fine-grained limestone with interbedded chert. Estimated compressive strength varied due to the amount of chert as compared to limestone in the collected samples.

Building Slab-on-Grade

Slab-on-grade construction may be utilized where applicable, provided a minimum four (4) inch cushion of sand, crushed stone or gravel is placed below the slab areas with a vapor barrier directly below the concrete.

Depending on the final grading plans, either stable Stratum II/III soils should be exposed beneath the slab dimensions or an appropriate amount of select fill material should be placed to provide stable under-slab conditions, per planned fill operations. The entirety of the slab subgrade area is recommended to be verified during construction by proof-rolling as described in previous sections. Stable subgrade soils should be exposed prior to fill operations, where applicable. All select fill materials should be compacted per the recommendations in Table 6 on the following page.

Site Retaining Structures – Lateral Earth Pressures

At the time of preparing this report, below-grade retaining elements are anticipated to be included within the design of the planned underground parking area. Below-grade retaining structures within the footprint of the planned parking area as well as other potential below-grade features should be designed to resist the minimum equivalent fluid weights provided in Table 5 on the following page. The recommended minimum factor of safety against sliding and overturning is 1.5 and 2.0 respectively. The provided lateral earth pressures assume a drained condition for the backfill material.

To achieve a drained condition, the retaining structures should be backfilled using a free-draining granular material and be provided with thru-wall drains or a gravity trench drain system graded to daylight for the release of any hydrostatic pressure which may develop.

The values provided by Table 5 below for No. 57 or No. 67 crushed stone gravel assume a 1H:1V maximum backfill slope from the heel of the retaining wall foundation. If a vertical "chimney drain" is provided by the No. 57 or No. 67 stone, then the values for onsite soils should be used based on proximity and relevancy towards the material behind the gravel. No. 57 and No. 67 stone used as retaining backfill should be installed in hand-compacted lifts. Select fill material installed behind this crushed stone gravel should be installed and compacted per the recommendations stated in Table 6.

Soil/Backfill Type	Moist Unit Weight	Friction Angle,	Equival	ent Fluid Pressure	e (lbs/ft³)
	(lbs/ft³)	φ (°)	Active	Passive	At-Rest
Onsite Soils (Stratum II)	110	15	65	187	82
Onsite Soils (Stratum III)	120	25	49	296	69
Select Fill Material (GC or GM)	120	28	43	332	64
No. 57 or No. 67 Stone	95	35	25	350	41

Table 5: Lateral Earth Pressures

A coefficient of friction of 0.40 may be used provided the retaining structure is supported on a minimum of four (4) inches of placed and compacted Class 7 Base Course material. A friction value of 0.35 may be used provided the retaining structures are supported directly on select fill material or stable onsite soils.

Select Fill Material

Any select fill material required for the project is recommended to be a locally available reddish-brown silty or clayey chert gravel meeting Unified Soils Classification as a GC or GM material and having a Plasticity Index of 35 or less, a Liquid Limit of 55 or less, a minimum of 30% retained on the ³/₄-inch sieve and a maximum of 35% passing the No. 200 sieve. Onsite materials, specifically Stratum III materials, may qualify as acceptable for use as select fill material but should be confirmed by classification and proctor testing prior to use on the project.

Any material to be used as select fill on the project should be reviewed and approved by the Geotechnical Engineer. All fill and backfill should be placed in horizontal lifts. When placing fill next to existing slopes, the slope face should be stripped of all vegetation and the face "benched" to allow the placement of horizontal lifts and bonding to the slope face. Table 6 below provides the recommended compaction parameters for select fill and Class 7 base course to be used on the project. Select fill and base course materials meeting the below-stated compaction requirements shall not impact structure settlement beyond the previously stated parameters of each foundation type.

Table 6: Compaction Requirements

Type of Material	Test Specifications	Minimum Dry Density (%)	Optimum Moisture Range (%)
Select Fill	Select Fill ASTM D698		-2% to +2%
Base Course	ASTM D1557	95	Near Optimum

Paved Parking and Driveway Areas

Site grading for the proposed paved parking and driveway areas should consist of initial stripping and proof-rolling as previously described in the *Subgrade Verification* section of the report. Subgrade conditions are generally anticipated to be stable in the upper one (1) to two (2) feet below the existing surface elevation as described in previous report sections. This recommendation assumes that site conditions at the time of construction are similar to those experienced at the time of our investigation.

As with the structure footprint, any soft and/or yielding subgrade materials should be remediated by undercutting and replacement with select fill. The frequency of these areas and the total depth of required undercut may increase based on site conditions at the time of earthwork operations, particularly if construction occurs during a wet weather pattern. Recommendations regarding undercut should be directed and verified by the Geotechnical Engineer, or his/her representative, based on the results of proof-rolling during construction. It is recommended that the Contractor carry an allowance of up to one (1) foot for an additional undercut beyond the recommended minimum stripping depth. Select fill material under the parking and driveway areas should be placed per the requirements in Table 6 above.

Thickened "bridging" lifts in the order of 18 to 24 inches may be utilized if beneficial beneath pavement areas, particularly to prevent additional or excessive undercutting in excess of three (3) feet.

Thickened lifts should only be implemented at the direction of a Geotechnical Engineer. The top eight (8) inches of any thickened lift should be compacted and tested per project specifications. A minimum of one (1) standard lift should be placed above any thickened lift utilized beneath pavement areas. **Bridging lifts should not be utilized within structure footprints.**

Minimum Project Pavement Recommendations

The following pavement recommendations in this section are based on stable subgrade material and/or select fill material existing beneath planned pavement sections. This requirement would be provided by proper placement of approved select fill material and/or stable onsite material being verified by proof-rolling within the pavement subgrade dimensions. Minimum project pavement sections are recommended to be as shown in Table 7 below.

For the recommendations contained herein, light-duty pavements are considered to be those pavements with low-volume traffic areas such as pedestrian sidewalks, parking and staging areas, and areas primarily subjected to passenger vehicles. The standard-duty pavement recommendations in this section are intended to be applicable to higher-volume traffic areas, and other pavement area dimensions that are to be periodically subjected to heavy trucks. The standard-duty pavements are recommended as performing similar to a typical city street pavement section with a residential classification. Heavy-duty pavements are recommended for areas in which a dumpster pad or frequent truck traffic may be utilized.

		Light Duty	Standard Duty	Heavy Duty
ent ent	Portland Cement Concrete	4"	N/A	6"
Concrete Pavement	Class 7 Base Course (95% MPD)	6"	N/A	8"
Pa C	Stable Subgrade or Compacted Select Fill (98% SPD)	24"	N/A	24"
t	ACHM Surface Course (1/2")	2"	3"	2"
Asphalt Pavement	ACHM Binder (1")	N/A	N/A	3"
Asp Jave	Class 7 Base Course (95% MPD)	6"	8"	8"
	Stable Subgrade or Compacted Select Fill (98% SPD)	24"	24"	24"

Table 7: Minimum Recommended Project Pavement Sections

The pavement sections provided by Table 7 should be viewed as minimums and can be increased through the design process by the project Civil Engineer if warranted.

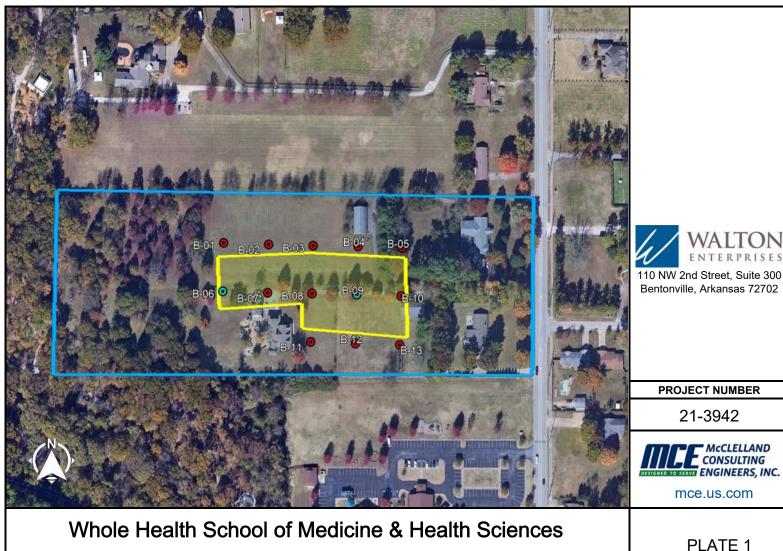
Construction Materials Testing and Special Inspections

Construction materials testing and special inspection services are recommended to be provided by MCE to provide consistency with the recommendations in this report and the documentation of those recommendations being implemented during construction. Testing of the earthwork, concrete, paving, structure and other phases is recommended to be conducted and documented during construction to assure the Owner and Engineer that the construction complies with the specifications. In particular, field verification of earthwork operations will be required to confirm the recommendations contained herein. Additionally, all trenching and excavations should be conducted in accordance with Arkansas State Law and OSHA guidelines and requirements.

Limitations and Reserved Rights

The recommendations and conclusions made in this report are based on the assumption that the subsoil conditions do not deviate appreciably from those disclosed in the subsurface exploration. Should significant subsoil variations or undesirable conditions be encountered during construction that are not described herein, the Geotechnical Engineer reserves the right to inspect these conditions for the purpose of reevaluating this report. A review of the final construction plans and specifications by this office is encouraged to ensure compliance with the intent of these recommendations.

Appendix A: Boring Layout



03

ICE

MCE

Little Rock Fayetteville Fort Smith Tulsa

Bentonville, Arkansas

Appendix B: Boring Logs

INCE

.

DESIGN		McClelland Consulting Engineers, Inc. 1580 East Stearns Street Fayetteville, AR 72703 Telephone: 479.587.1303					E	BOF	RING	G NUMBER B-01 PAGE 1 OF 1
CLIEN	IT W	alton Enterprises	PROJECT		ME	Whole	e Health Scl	hool of	Medic	cine & Health Sciences
PROJ										
DATE	STAR	TED _1/4/22 COMPLETED _1/4/22	GROUND	ELE	VAT		1284 ft		HOLE	SIZE 4.25 inches
DRILL	ING C	ONTRACTOR McClelland Consulting Engineers, Inc.	GROUND	WA	TER	LEVE	LS:			
		IETHOD Solid Stem Auger								
LOGG	ED B	CHECKED BY _W. Hopkins								
		nducted Using A Diedrich D-50 Track Rig								
o DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE	NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	▲ SPT N VALUE ▲ 20 40 60 80 PL MC LL 20 40 60 80 □ FINES CONTENT (%) □ 20 40 60 80
		TOPSOIL (4")								
		(CL) SANDY LEAN CLAY: Light Brown to Brown; Medium-Stiff; Low to Moderate Plasticit	ty; Moist	X	SS 1	33	1-1-3 (4)			
		- Hard	,	X	SS 2	39	16-21-13 (34)	-		•
		(GC) CLAYEY GRAVEL WITH SAND:		Ń	SS	00	13-39-17			
5		Dark Reddish-Brown; Very Dense; Moderate to High Plasticity Coarse and Fine Gravel; Few Coarse Sand; Trace Medium an Sand; Moist	; Little d Fine	$\frac{1}{\sqrt{2}}$	3 SS	89	(56) 12-15-26	-		
			e	Δ_	4	94	(41)	-		
								-		
		- Medium-Dense		X	SS 5	106	3-6-8 (14)	-		AO
										· · · · · · · · · · · · · · · · · · ·
 15				X	SS 6	117	9-15-6 (21)			
				<u> </u>				-		
		- Medium-Dense to Dense		\mathbf{X}	SS 7	100	13-15-8 (23)	-		•
			e e e e e e e e e e e e e e e e e e e	/ \	'		(23)	-		
 		- Very Loose			SS		3-2-1	-		
25			e e e e e e e e e e e e e e e e e e e	X.	8	28	(3)	-		
	1 A									
					SS	100	50/1"			• >>
		Refusal at 28.0 feet. Bottom of borehole at 29.0 feet.		7	9					

DESIGN		McClelland Consulting Engineers, Inc. 1580 East Stearns Street Fayetteville, AR 72703 Telephone: 479.587.1303				E	BOF	RING	G NUMBER B-02 PAGE 1 OF 1
CLIEN	IT Wa	alton Enterprises	PROJEC	T NAME	Whole	e Health Scl	hool of	Medic	cine & Health Sciences
PROJ	ECT N		PROJEC	T LOCAT		Bentonville,	Arkans	sas	
DATE	STAR	TED 1/5/22 COMPLETED 1/5/22	GROUNE	ELEVA		1282.5 ft		HOLE	SIZE 4.25 inches
DRILL	ING C	ONTRACTOR McClelland Consulting Engineers, Inc.	GROUNE	WATER	LEVE	LS:			
DRILL	ING M	ETHOD Solid Stem Auger	AT	TIME OF	DRILI	LING			
LOGG	ED B	D. Bunch CHECKED BY W. Hopkins	AT	END OF	DRILL	ING			
NOTE	S _Co	nducted Using A Diedrich D-50 Track Rig	AF	TER DRI	LLING				
o DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	▲ SPT N VALUE ▲ 20 40 60 80 PL MC LL 20 40 60 80 □ FINES CONTENT (%) □ 20 40 60 80
							-		
		(CL) SANDY LEAN CLAY: Dark Reddish-Brown; Medium-Stiff; Low to Moderate Plasticity - Hard	; Moist	SS 1	58	2-2-2 (4)			•
		(GC) CLAYEY GRAVEL WITH SAND:		SS 2	94	5-8-23 (31)	-		•
		Reddish-Brown; Very Dense; Moderate to High Plasticity; Mois	t	SS 3	97	17-25-28 (53)	-		•
				SS 4	94	17-32-24 (56)	-		
 _ <u>10</u> 		- Dense		SS 5	72	7-13-12 (25)			
 _ <u>15</u> 		- Very Dense		SS 6	78	5-33-26 (59)	-		•
 <u>20</u> 		(SC) CLAYEY SAND WITH GRAVEL: Reddish-Brown; Medium-Dense; Moderate to High Plasticity; N	loist	SS 7	72	5-10-12 (22)	-		
		- Dense		SS 8	92	9-24-11 (35)			
		Refusal at 26.0 feet. Bottom of borehole at 26.0 feet.		SS 9	100	\			

DESIGN		McClelland Consulting Engineers, Inc. 1580 East Stearns Street Fayetteville, AR 72703 Telephone: 479.587.1303				E	BOF	RING	G NUMBER B-03 PAGE 1 OF 1
			PROJEC		Whole	e Health Sc	hool of	Medic	cine & Health Sciences
PROJ	ECT N	JMBER _ 21-3942	PROJEC	T LOCAT	ION E	Bentonville,	Arkans	sas	
		TED <u>1/5/22</u> COMPLETED <u>1/5/22</u>	GROUN			1281.5 ft		HOLE	SIZE 4.25 inches
DRILL	ING C	ONTRACTOR McClelland Consulting Engineers, Inc.	GROUN	O WATER	LEVE	LS:			
DRILL	ING M	ETHOD Solid Stem Auger	AT		DRILI	_ING			
LOGG	ED B	W. Hopkins CHECKED BY D. Lawrence	A	END OF	DRILL	ING			
NOTE	S _ Co	nducted Using A CME 45B Truck-Mounted Rig	AF	TER DRI	LLING				
o DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	▲ SPT N VALUE ▲ 20 40 60 80 PL MC LL 20 40 60 80 □ FINES CONTENT (%) □ 20 40 60 80
	<i>``````</i> ``			∕∕ ss		2-2-4	-		<u>20 40 00 00</u>
		(CL) SANDY LEAN CLAY: Reddish-Brown to Brown; Medium-Stiff to Stiff; Low to Moder		<u>Д</u> 1	94	(6)			
		Plasticity; Moist	ale	SS 2	58	3-3-6 (9)			
5		(CH) SANDY FAT CLAY: Light Reddish-Brown; Stiff; Moderate to High Plasticity; Little	Fine		117	4-9-18 (27)			
		Gravel; Few Coarse and Fine Sand; Little Medium Sand; Mois	st	X SS 4	76	25-40- 50/5"]		
		(GC) CLAYEY GRAVEL WITH SAND: Reddish-Brown; Very Dense; Moderate to High Plasticity; Moi	st		1	00/0	1		
				X ss	106	6-20-18	-		
10				<u> </u>		(38)	1		
									·····
15		- Dense		$\bigvee SS _{6}$	92	6-14-13 (27)			
					1		1		
	, P.L.	- Medium-Dense		√ ss	94	5-8-7	-		
20				Δ 7	94	(15)			
25		(CL) LEAN CLAY: Dark Reddish-Brown; Stiff; Low to Moderate Plasticity; Mois	st		133	3-3-7 (10)			┝╍ᡬ╡
		Dark Reduisi-Drown, Sun, Low to Moderate Flasholy, Mod	51			(10)	1		
				∑ ss		5-3-6	-		
30					40	(9)			
35		(GC) CLAYEY GRAVEL WITH SAND:		SS SS	47	17-17-8	1		
		Reddish-Brown; Dense; Moderate to High Plasticity; Moist		<u> </u>		(25)			
						0.0.0	_		
40		- Medium-Dense			56	8-8-9 (17)			
				NR 12					
45	1 <u>77</u> 77	Refusal at 45.0 feet.		12			<u> </u>		Iiii
		Bottom of borehole at 45.0 feet.							

Γ

DESIGN		CONSULTING ENGINEERS, INC. McClelland Consulting Engineers, Inc. 1580 East Stearns Street Fayetteville, AR 72703 Telephone: 479.587.1303				E	3OF	RING	G NUMBER B-04 PAGE 1 OF 1
CLIEN	IT Wa	alton Enterprises F	PROJECT NAME Whole Health School of Medicine & Health Sciences						
PROJ	ECT N								
DATE	STAR	TED _1/5/22 COMPLETED _1/5/22 C	GROUNE	ELEVAT		1280 ft		HOLE	SIZE 4.25 inches
DRILL	ING C	ONTRACTOR McClelland Consulting Engineers, Inc.	GROUND	WATER	LEVE	LS:			
		ETHOD Solid Stem Auger		TIME OF	DRIL	LING			
		W. Hopkins CHECKED BY D. Lawrence	AT	END OF	DRILL	.ING			
NOTE	S _Co	nducted Using A CME 45B Truck-Mounted Rig	AF	TER DRII	LING				
o DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	▲ SPT N VALUE ▲ 20 40 60 80 PL MC LL 40 60 80 □ FINES CONTENT (%) □ 20 40 60 80
		COARSE-AGGREGATE BASE (6")				<i></i>	-		
		(CL) SANDY LEAN CLAY: Reddish-Brown; Stiff; Low to Moderate Plasticity; Moist		SS 1	78	5-5-4 (9)			•
		- Very Stiff			89	4-6-9 (15)			
				S ss	100	4-7-9	-		
5		(SC) CLAYEY SAND WITH GRAVEL:		∕ 3		(16)	-		
		Reddish-Gray; Very Dense; Moderate to High Plasticity; Little F	ine	X ss	100	13-50/3"	-		>>
		Gravel; Few Coarse Sand; Little Medium and Fine Sand; Moist		4					
						20-20-	-		
10				5	100	50/2"			>>
				∑ ss	72	10-29-12			
15				/ 6	12	(41)	-		·····
		(CL) SANDY LEAN CLAY:				4.0.4	-		
20		Reddish-Brown; Stiff; Low to Moderate Plasticity; Moist		SS 7	117	4-3-4 (7)			
		(GC) CLAYEY GRAVEL WITH SAND: Reddish-Brown; Dense; Moderate to High Plasticity; Little Coars	se and		69	6-10-14 (24)			
_ 25		Fine Gravel; Few Coarse Sand; Trace Medium and Fine Sand;	Moist	/ \ •		(24)	-		
		- Medium-Dense		∕∕ ss		8-8-8	-		
30	BA	- Medium-Dense		$\bigwedge 9$	92	(16)			
	1 A A				81	5-12-50/1"			
		Refusal at 34.5 feet. Bottom of borehole at 34.5 feet.		<u> </u>	,				

DESIG		CONSULTING ENGINEERS, INC. McClelland Consulting Engineers, Inc. 1580 East Stearns Street Fayetteville, AR 72703 Telephone: 479.587.1303				E	BOF	RING	G NUMBER B-05 PAGE 1 OF 1		
CLIEN	IT _W	alton Enterprises	PROJECT NAME _ Whole Health School of Medicine & Health Sciences								
PROJ	ECT N										
DATE	STAR	TED _1/7/22 COMPLETED _1/7/22	GROUNE	ELEVAT		1279.5 ft		HOLE	SIZE 6.25 inches		
DRILL	ING C	ONTRACTOR McClelland Consulting Engineers, Inc.	GROUNE	WATER	LEVE	LS:					
DRILL	ING M	ETHOD Hollow Stem Auger 6.25"	AT	TIME OF	DRIL	LING					
LOGO	BED B	J. Self CHECKED BY W. Hopkins	AT	END OF	DRILL	.ING					
NOTE	S <u>Co</u>	nducted Using A Diedrich D-50 Track Rig									
o DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	▲ SPT N VALUE ▲ 20 40 60 80 PL MC LL 20 40 60 80 □ FINES CONTENT (%) □ 20 40 60 80		
 5 		TOPSOIL (4") (SC) CLAYEY SAND WITH GRAVEL: Reddish-Orange to Reddish-Brown; Dense; Low to Moderate Plasticity; Few Coarse Gravel; Little Fine Gravel; Little Coarse Fine Sand; Few Medium Sand; Moist - Very Dense	and	$\begin{array}{ c c c c } & SS & 1 \\ & SS & 2 \\ \hline & SS & 3 \\ \hline & SS & 4 \\ \hline \end{array}$	100 100 100 72	4-4-22 (26) 5-33-50/4" 15-50/4" 14-24-35 (59)	-				
 <u>10</u> 		- Dense		SS 5	17	7-13-23 (36)			•		
 _ <u>_ 15</u> 		- Medium-Dense to Dense		SS 6	89	15-13-10 (23)					
 		(GC) CLAYEY GRAVEL WITH SAND: Light Reddish-Brown; Medium-Dense; Moderate to High Pla Little Coarse and Fine Gravel; Few Coarse, Medium. and Fir Sand; Moist	sticity; าe	SS 7	56	13-6-5 (11)	-				
 <u>25</u> 				SS 8	50	5-7-5 (12)	-				
 				SS 9	50	5-10-4 (14)	-				
 35 		- Very Dense		SS 10 NR 11	54	10-14- 50/1" 50/0"			•		
	¥X.	Refusal at 37.0 feet. Bottom of borehole at 37.0 feet.			<u> </u>		<u> </u>	<u> </u>	<u> </u>		

Γ

DESIG		McClelland Consulting Engineers, Inc. 1580 East Stearns Street Fayetteville, AR 72703 Telephone: 479.587.1303					BOF	RING	G NUMBER B-06 PAGE 1 OF 1		
CLIENT Walton Enterprises				PROJECT NAME Whole Health School of Medicine & Health Sciences							
PROJ	ECT NI										
DATE	STAR	TED1/4/22 COMPLETED1/4/22	GROUND	ELEVA		1283.5 ft		HOLE	SIZE 4.25 inches		
DRILL	ING CO	DNTRACTOR McClelland Consulting Engineers, Inc.	GROUND	WATER	LEVE	LS:					
DRILL	ING M	ETHOD Solid Stem Auger	AT	TIME OF	DRILI	_ING					
LOGO	GED BY	D. Bunch CHECKED BY W. Hopkins	AT END OF DRILLING								
NOTE	S Cor	ducted Using A Diedrich D-50 Track Rig	AF	TER DRI	LLING						
DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	□ FINES CONTENT (%) □		
0						0.0.1			<u>20 40 60 80</u>		
 		(CL) SANDY LEAN CLAY: Dark Brown; Medium-Stiff to Stiff; Low to Moderate Plasticity; (GC) CLAYEY GRAVEL WITH SAND: Reddish-Brown; Very Dense; Moderate to High Plasticity; Trac Coarse Gravel; Some Fine Gravel; Few Coarse and Medium S Trace Fine Sand; Moist	e	SS 1 SS 2 SS 3 SS 4	56 56 78 94	2-2-4 (6) 7-23-30 (53) 12-26-19 (45) 6-9-34 (43)	-				
 		- Dense		SS 5 SS 6	89 78	5-8-16 (24) 5-21-15 (36)	-				
		- Medium-Dense		SS 7	17	5-8-12 (20)	-		•		
 		LIMESTONE (Boone Formation): Light Gray; Hard; Fine-Grained; Chert Interbedding Core Sample #1 (24 Feet) CORE RUN #1 (23	3.5-28.5)	SS 8	-	50/0"			>>		
 _ <u>-</u> -		Unit Weight: 154.6 pcf REC = 98%RQD = Strength: 949.5 tsf Core Sample #2 (30 Feet)	76%								
		Unit Weight: 158.1 pcf Strength: 959.9 tsf - Void Encountered from	45%								
<u>35</u> 40		31.5 to 36.5 feet CORE RUN #3 (30 REC = 98%RQD = Core Sample #3 (40 Feet) Unit Weight: 156.1 pcf									
		Refusal at 23.5 feet. Bottom of borehole at 41.5 feet.									

Γ

DESIGN		McClelland Consulting Engineers, Inc. 1580 East Stearns Street Fayetteville, AR 72703 Telephone: 479.587.1303				E	3OF	RING	G NUMBER B-07 PAGE 1 OF 1		
CLIEN	IT Wa	alton Enterprises	PROJECT NAME Whole Health School of Medicine & Health Sciences								
PROJ	ECT N	JMBER _ 21-3942									
DATE	STAR	TED 1/6/22 COMPLETED 1/6/22	GROUN			1283 ft		HOLE	SIZE 4.25 inches		
DRILL	ING C	ONTRACTOR McClelland Consulting Engineers, Inc.	GROUN	D WATER	LEVE	LS:					
DRILL	ING M	ETHOD Solid Stem Auger	A		DRIL	LING					
LOGG	ED B	W. Hopkins CHECKED BY D. Lawrence	A	t end of	DRILL	.ING					
NOTE	S Co	nducted Using A CME 45B Truck-Mounted Rig	A	FTER DRI	LLING						
o DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	▲ SPT N VALUE ▲ 20 40 60 80 PL MC LL 20 40 60 80 □ FINES CONTENT (%) □ 20 40 60 80		
		ASPHALT (2")		- 			-				
		(CL) SANDY LEAN CLAY: Dark Brown; Stiff; Low to Moderate Plasticity; Moist		SS 1 SS	56	5-4-7 (11)					
		(GC) CLAYEY GRAVEL WITH SAND: Reddish-Brown; Very Dense; Moderate to High Plasticity; So Gravel; Few Coarse, Medium, and Fine Sand; Moist	ome Fine	2	100	36-50/5"	-				
				SS 3	83	42-36-10 (46)			•		
				SS 4	89	8-28-15 (43)			•		
		- Dense		ss 5	78	19-16-11	_		• •		
10				<u> </u>		(27)	-				
		- Medium-Dense					-				
15				SS 6	72	11-5-7 (12)	-		A •		
20				SS 7	83	4-9-11 (20)					
				X ss	117	3-50/0"			• >>		
	WY/	Refusal at 24.5 feet.		8	Ι						
		Bottom of borehole at 24.5 feet.									

DESIGN	ED TO SE	McClelland Consulting Engineers, Inc. 1580 East Stearns Street Fayetteville, AR 72703 Telephone: 479.587.1303				E	BOF	RINC	B NUMBER B-08 PAGE 1 OF 1		
CLIEN	T_Wa	alton Enterprises	PROJECT NAME Whole Health School of Medicine & Health Sciences								
PROJ											
DATE	STAR	TED1/6/22 COMPLETED1/6/22	GROUNE	ELEVA		1282.5 ft		HOLE	SIZE 4.25 inches		
DRILL	ING C	ONTRACTOR McClelland Consulting Engineers, Inc.	GROUNE	WATER	LEVE	LS:					
DRILL	ING M	ETHOD Solid Stem Auger	AT TIME OF DRILLING								
LOGG	ED BY	W. Hopkins CHECKED BY D. Lawrence	AT	END OF	DRILL	_ING					
NOTE	S _Co	nducted Using A CME 45B Truck-Mounted Rig	AF	TER DRI	LLING						
o DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	▲ SPT N VALUE ▲ 20 40 60 80 PL MC LL 20 40 60 80 □ FINES CONTENT (%) □ 20 40 60 80		
L _		COARSE-AGGREGATE BASE (2")		V ss		7-3-5	-				
		(CL) SANDY LEAN CLAY: Dark Brown; Stiff; Low to Moderate Plasticity; Moist			61	(8)					
		(GC) CLAYEY GRAVEL WITH SAND: Reddish-Brown; Very Dense; Moderate to High Plasticity; Mois	st	SS 2	87	6-9-50/3"			•		
				SS 3	100	38-27-15 (42)			•		
				ss 4	89	20-34-14 (48)			•		
				<u>/ </u>			_				
		(SC) CLAYEY SAND: Reddish-Brown; Medium-Dense; Moderate to High Plasticity; Coarse Gravel; Trace Coarse Sand; Little Medium and Fine S Moist	Few and;	ss 5	111	6-5-9 (14)	-				
 15				ss 6	106	4-7-7 (14)			▲ ●		
				<u> </u>							
20				SS 7	81	8-5-4 (9)			•		
											
		Refusal at 24.0 feet.		≥ ss 8	100	50/3"	/		• >>		
		Bottom of borehole at 24.0 feet.									

DESIG	NED TO SEA	McClelland Consulting Engineers, Inc. 1580 East Stearns Street Fayetteville, AR 72703 Telephone: 479.587.1303					E	BOF	RING	G NUMBER B-09 PAGE 1 OF 1			
CLIEN	NT Wa	Iton Enterprises	PROJECT NAME Whole Health School of Medicine & Health Sciences										
PROJ		JMBER <u>21-3942</u>											
DATE	STAR	TED1/5/22 COMPLETED1/5/22	GROUN	D ELE		N _	1281 ft		HOLE	SIZE 6.25 inches			
DRILL		DNTRACTOR McClelland Consulting Engineers, Inc.	GROUN	D WAT	ER LE	VEI	_S:						
DRILL	ING M	ETHOD Hollow Stem Auger 6.25"	AT TIME OF DRILLING										
LOGO	LOGGED BY J. Self CHECKED BY W. Hopkins												
NOTES Conducted Using A Diedrich D-50 Track Rig				TER	DRILLI	NG			-				
o DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE	RECOVERY %	(RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	▲ SPT N VALUE ▲ 20 40 60 80 PL MC LL 40 60 80 □ FINES CONTENT (%) □ 20 40 60 80			
		ASPHALT (3")			SS 6	7	12-6-8						
		COARSE-AGGREGATE BASE (4") (CL) LEAN CLAY:]		1	9	<u>(14)</u> 2-3-2						
		Dark Brown; Very Stiff; Low to Moderate Plasticity; Trace Fin Trace Coarse and Medium Sand; Few Fine Sand; Moist	e Gravel;	H	2 –	9 00	<u>(5)</u> 3-5-8						
		(GC) CLAYEY GRAVEL WITH SAND:		KX :	3	00	(13)						
[]		Reddish-Brown; Very Dense; Moderate to High Plasticity; Mo	ist		3S 10 4		4-6-37 (43)						
					S 10	00	7-50	-					
10					5	50	7-50	1					
L _													
					SS 7	8	11-24-20 (44)			● : : : /			
								1		/=/-=			
L .													
20		(SC) CLAYEY SAND WITH GRAVEL:			SS 6	7	13-14-9	1					
		Reddish-Brown; Medium-Dense to Dense; Low to Moderate Little Fine Gravel; Few Coarse and Medium Sand; Little Fine			7		(23)	1					
		Moist											
L _		- Medium-Dense			S 10	00	6-6-13	-					
				A_	8	00	(19)						
								4					
30		- Medium-Dense to Dense			SS 6	7	14-14-9 (23)						
		- Dense			SS 7	2	7-9-16 (25)	1					
							(23)	1					
						20	E0/1"			• • • • • •			
		LIMESTONE (Boone Formation): Light Gray; Hard; Fine-Grained; Chert Interbedding			S <u>10</u> 11	00_	50/1"	/					
40		Core Sample #1 (38.5 Feet) CORE RUN #1 (3	,										
			EC = 50% QD = 67%										
L													
		Core Sample #2 (47 Feet) CORE RUN #2 (4 Unit Weight: 162.4 pcf RI	12.5-47.5) EC = 85%										
-	╞╍┶┥		2D = 63%										
		Refusal at 37.5 feet. Bottom of borehole at 47.5 feet.		1	I				1				

DESIGN		CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULT CONSULTING CONSULTING CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT				E	BOF	RING	G NUMBER B-10 PAGE 1 OF 1		
CLIEN	IT Wa	Iton Enterprises P	PROJECT NAME Whole Health School of Medicine & Health Sciences								
PROJ		JMBER <u>21-3942</u> P									
DATE	STAR	TED _1/6/22 COMPLETED _1/6/22 G	GROUND ELEVATION 1281 ft HOLE SIZE 4.25 inches								
DRILL	ING C	ONTRACTOR McClelland Consulting Engineers, Inc. G	ROUNE	WATER	LEVE	LS:					
		ETHOD Solid Stem Auger	AT TIME OF DRILLING								
		W. Hopkins CHECKED BY D. Lawrence									
NOTE	S Col	nducted Using A CME 45B Truck-Mounted Rig	AF	TER DRI	LLING						
o DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	▲ SPT N VALUE ▲ 20 40 60 80 PL MC LL 40 60 80 □ FINES CONTENT (%) □ 20 40 60 80		
		ASPHALT (3")		∕∕ ss		5-8-3	-				
		COARSE-AGGREGATE BASE (3") (CL) LEAN CLAY WITH SAND:			82	(11) 2-3-4			··· <i>F</i> ·····		
		Dark Brown; Stiff; Low to Moderate Plasticity; Few Coarse an Fine Gravel; Trace Coarse, Medium, and Fine Sand; Moist	d _	2 SS	61	(7) 10-20-20					
5		(GC) CLAYEY GRAVEL WITH SAND:]	△ 3	111	(40)	-				
		Reddish-Brown; Very Dense; Moderate to High Plasticity; Moist		SS 4	100	23-50/4"	-		• >>7		
		- Medium-Dense		∕ ss	81	9-9-12	-				
10				5	01	(21)	-				
		(CH) FAT CLAY WITH SAND:		X ss	139	5-6-6					
15		Dark Reddish-Brown; Stiff to Very Stiff; Few Fine Gravel; Few C and Medium Sand; Trace Fine Sand; Moist	Coarse	6		(12)	-				
									\		
 20		(GC) CLAYEY GRAVEL WITH SAND: Reddish-Brown; Medium-Dense; Moderate to High Plasticity;	l ittle	SS 7	94	13-6-10 (16)					
		Coarse and Fine Gravel; Few Coarse, Medium, and Fine Sand;					1				
									····		
						5-4-7	-				
25					78	(11)					
				SS 9	72	2-7-3	-				
30				<u> </u>		(10)	-				
	ŻŻ										
									.		
 35		- Loose		SS 10	61	3-2-2					
						(4)	1				
	1D										
40				NR							
	<i>L</i> A			11							
	<u>, x y/\/ </u>	Refusal at 41.5 feet. Bottom of borehole at 41.5 feet.									

DESIGN		McClelland Consulting Engineers, Inc. 1580 East Stearns Street Fayetteville, AR 72703 Telephone: 479.587.1303				I	Bof	RING	G NUMBER B-11 PAGE 1 OF 1		
CLIEN	IT_Wa	alton Enterprises	PROJECT NAME Whole Health School of Medicine & Health Sciences								
PROJ	ECT N										
DATE	STAR	TED _1/7/22 COMPLETED _1/7/22	GROUND ELEVATION 1282.5 ft HOLE SIZE 6.25 inches								
DRILL	ING C	ONTRACTOR McClelland Consulting Engineers, Inc.	GROUND	WATER	LEVE	LS:					
DRILL	ING M	ETHOD Hollow Stem Auger 6.25"	AT	TIME OF	DRILI	LING					
LOGG	ED B	CHECKED BY W. Hopkins									
NOTE	S _ Co	nducted Using A Diedrich D-50 Track Rig	AF	TER DRI	LLING						
o DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	▲ SPT N VALUE ▲ 20 40 60 80 PL MC LL 20 40 60 80 □ FINES CONTENT (%) □ 20 40 60 80		
		TOPSOIL (5") (CL) LEAN CLAY:				224	-				
		(CL) LEAN CLAY: Dark Brown; Stiff; Low to Moderate Plasticity; Moist - Very Stiff		ss 1	122	2-3-4 (7)	_		•		
		(GC) CLAYEY GRAVEL WITH SAND:		SS 2	122	3-6-15 (21)	-				
5		Reddish-Brown; Very Dense; Moderate to High Plasticity; Few Gravel; Little Fine Gravel; Few Coarse, Medium, and Fine Sar	/ Coarse nd; Moist	SS 3	117	3-19-27 (46)	_				
				$\begin{pmatrix} ss \\ 4 \end{pmatrix}$	111	23-29-30 (59)	_				
 		- Dense		SS 5	100	11-17-13 (30)	-		• *		
				<u> </u>							
15		- Medium-Dense		SS 6	89	5-6-5 (11)					
				SS 7	67	8-9-11 (20)	_		•		
				SS 8	94	8-10-10 (20)					
	Z Z Z	Refusal at 28.0 feet. Bottom of borehole at 28.5 feet.		SS 9		50/0"			······		

DESIGN		McClelland Consulting Engineers, Inc. 1580 East Stearns Street Fayetteville, AR 72703 Telephone: 479.587.1303				I	BOF	RINC	G NUMBER B-12 PAGE 1 OF 1		
CLIEN	IT _Wa	alton Enterprises	PROJECT NAME Whole Health School of Medicine & Health Sciences								
PROJI	ECT N										
DATE	STAR	TED _1/6/22 COMPLETED _1/6/22	GROUND	ELEVA		1281.5 ft		HOLE	SIZE 6.25 inches		
DRILL	ING C	ONTRACTOR McClelland Consulting Engineers, Inc.	GROUND	WATER	LEVE	LS:					
DRILL	ING M	ETHOD Hollow Stem Auger 6.25"	AT	TIME OF	DRILL	_ING					
LOGG	ED B)	J. Self CHECKED BY W. Hopkins									
NOTE	S Co	nducted Using A Diedrich D-50 Track Rig	AF	ER DRI	LING						
o DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	▲ SPT N VALUE ▲ 20 40 60 80 PL MC LL 20 40 60 80 □ FINES CONTENT (%) □ 20 40 60 80		
		TOPSOIL (4")		/			_				
		(CL) LEAN CLAY: Dark Brown; Stiff; Low to Moderate Plasticity; Moist			133	2-3-5 (8)					
		(GC) CLAYEY GRAVEL WITH SAND: Reddish-Brown; Very Dense; Moderate to High Plasticity; Mois	st	ss 2	111	8-33-40 (73)			•		
			ł	ss	100	17-50					
5	s Al		4	3							
	Þ		e	\preceq ss	100	38-50/1"	-		• >>		
	, A										
				1			-				
		(CL) SANDY LEAN CLAY WITH GRAVEL: Dark Reddish-Brown; Hard; Moderate to High Plasticity; Little			92	17-16-18 (34)			●⊢▲┊╴		
10		Gravel; Few Coarse and Medium Sand; Trace Fine Sand; Moi				(04)	-				
				ss 🗸		4-18-19	-				
15				SS 6	72	(37)					
			,				_				
		- Very Stiff			56	7-8-8 (16)			.		
20			4	<u>'</u> \'		(10)	-				
	6HX	(GC) CLAYEY GRAVEL WITH SAND:		√ ss		10-11-9	1				
_ 25		Reddish-Brown; Medium-Dense; Moderate to High Plasticity;	Moist	8	69	(20)					
	b/S)										
	6XXA										
	YXX			ss 9		50/0"	1				
	HX			/ 9		55,0			•		
		Refusal at 28.5 feet. Bottom of borehole at 28.5 feet.							-		

Γ

DESIG		CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT CONSULT	BORING NUMBER B-13 PAGE 1 OF 1								
		alton Enterprises	PROJECT NAME _Whole Health School of Medicine & Health Sciences								
PROJ		UMBER _21-3942									
			GROUND ELEVATION 1281.5 ft HOLE SIZE 6.25 inches								
DRILL	ING C	ONTRACTOR McClelland Consulting Engineers, Inc.	GROUN	D WATER	LEVE	LS:					
DRILL	ING M	ETHOD Hollow Stem Auger 6.25"	A		DRIL	LING					
LOGO	ED B	J. Self CHECKED BY W. Hopkins									
NOTE	S _ Co	nducted Using A Diedrich D-50 Track Rig	AF	TER DRI	LLING						
o DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	▲ SPT N VALUE ▲ 20 40 60 80 PL MC LL 20 40 60 80 □ FINES CONTENT (%) □ 20 40 60 80		
		TOPSOIL (4")		∬ ss		0-2-3					
		(CL) LEAN CLAY: — Dark Brown; Medium-Stiff; Low to Moderate Plasticity; Moist	~	1	83	(5)					
		(CL) SANDY LEAN CLAY WITH GRAVEL:		3 ss 2	100	3-8-11 (19)					
- -		Reddish-Brown; Hard; Low to Moderate Plasticity; Little Fine Little Coarse Sand; Few Medium and Fine Sand; Moist	Glavel,	SS 3	100	4-11-50/4"	'				
5				S	100	37-50/2"			• >>		
				4	1						
[_		(GC) CLAYEY GRAVEL WITH SAND: Reddish-Brown; Very Dense; Moderate to High Plasticity; Mo	ist								
			151	√ ss	67	11-20-22					
10				5	07	(42)	-		Ţ		
	1										
	B	- Dense		∕ ss		8-16-15	-				
15		- Dense		$\bigwedge 6$	89	(31)					
) I								·····		
	(S)										
20		- Medium-Dense		SS 7	83	9-7-11 (18)			4		
	E S						1				
-											
) J										
25	0 0 0 0	(GM) SILTY GRAVEL WITH SAND: Light Reddish-Brown; Medium-Dense; Negligible to Low Plas	ticity [.]		56	13-11-5 (16)			••••		
	Pap	Moist				(10)					
	$\left(\begin{array}{c} 0 \end{array} \right)$	- Very Loose to Loose		SS SS	17	3-2-1					
30				9		(3)					
	693										
ļ -		- Loose		∕ ss	40	6-3-3	1				
35	þβ			10	40	(6)	-				
	p f			NR 11		50/0"					
		Refusal at 37.0 feet.			1	I	1	1	······		
		Bottom of borehole at 37.0 feet.									

Г

McClelland Consulting Engineers, Inc. 1580 East Stearns Street

KEY TO SYMBOLS

CLIENT Walton Enterprises PF			PROJECT NAME Whole Health School of Medicine & Health Sciences						
PROJECT N	JMBER _ 21-3942	PROJECT LOCATION Bentonville, Arkansas							
LITHOLOGIC SYMBOLS			SAMPLER SYMBOLS						
(Unifi	ed Soil Classification System)								
	ASPHALT: Asphalt	No Recovery							
	COARSE-AGGREGATE CH: USCS High Plasticity Clay		Split Spoon						
			FINE GRAINED ANALYSIS DESCRIPTORS						
	CL: USCS Low Plasticity Clay		-		_				
			Descriptor	Meaning					
	GC: USCS Clayey Gravel		Trace	Less than 5%					
			Few	5% to 10%					
e P C	GM: USCS Silty Gravel		Little	15% to 25%					
6H3			Some	30% to 45%					
	LIMESTONE: Limestone		Mostly	50% to 100%					
	SC: USCS Clayey Sand								
<u>17. 31 12.</u> <u>17. 32.</u>	TOPSOIL: Topsoil								

IN-SITU SHEAR STRENGTHS

	COARSE	-GRAINED SOILS	FINE-GRAINED SOILS					
	tration s/foot)	In-Situ Strengths		tration s/foot)	In-Situ Strengths			
Auto	Manual		Auto	Manual				
0 - 3	0 - 4	Very Loose	< 2	<2	Very Soft			
3 - 8	4 - 10	Loose	2 - 3	2 - 4	Soft			
8 - 23	10 - 30	Medium-Dense	3 - 6	4 - 8	Medium-Stiff			
23 - 38	30 - 50	Dense	6 - 12	8 - 15	Stiff			
> 38	> 50	Very Dense	12 - 23	15 - 30	Very Stiff			
			> 23	> 30	Hard			

ABBREVIATIONS

- LL LIQUID LIMIT (%)
- ΡI - PLASTIC INDEX (%)
- W - MOISTURE CONTENT (%)
- DD DRY DENSITY (PCF)
- NP NON PLASTIC
- -200 PERCENT PASSING NO. 200 SIEVE
- PP POCKET PENETROMETER (TSF)

- TV TORVANE
- PID PHOTOIONIZATION DETECTOR
- UC UNCONFINED COMPRESSION
- ppm PARTS PER MILLION
- Water Level at Time Ā Drilling, or as Shown
- Water Level at End of Ţ Drilling, or as Shown
- Water Level After 24
- Ā Hours, or as Shown

Appendix C: Laboratory Test Results

McClelland Consulting Engineers, Inc.

SUMMARY OF LABORATORY RESULTS

PAGE 1 OF 3

CLIENT Walton I	Enterprises				PRO	JECT NAME	Whole Hea	alth School of	Medicine & H	lealth Scien	ces
PROJECT NUMBE	1	1	PRO	JECT LOCA	TION Bento	nville, Arkans	sas		1		
Borehole	Depth	Liquid Limit	Plastic Limit	Plasticity Index	Maximum Size (mm)	%<#200 Sieve	Class- ification	Water Content (%)	Dry Density (pcf)	Satur- ation (%)	Void Ratio
B-01	0.5							14.5			
B-01	2.0							10.5			
B-01	3.5							13.2			
B-01	5.0	60	25	35	19	45	GC	12.6			
B-01	8.5							24.5			
B-01	13.5							16.2			
B-01	18.5							14.4			
B-01	23.5							23.4			
B-01	28.5							16.7			
B-02	0.5							12.3			
B-02	2.0							13.2			
B-02	3.5							11.7			
B-02	5.0							11.3			
B-02	8.5							11.5			
B-02	13.5							14.9			
B-02	18.5	48	24	24	25	33	SC	26.7			
B-02	23.5							19.7			
B-02	26.0							15.2			
B-03	0.5							16.8			
B-03	2.0	55	21	34	9.5	63	СН	24.2			
B-03	3.5	00	21		0.0			12.1			
B-03	5.0							11.9			
B-03	8.5							9.8			
B-03	13.5							10.6			
B-03	18.5							15.6			
B-03	23.5	33	19	14	9.5	89	CL	17.9			
B-03	28.5		13	14	9.0	03		18.6			
B-03	33.5							16.9			
B-03	38.5							15.6			
B-03	0.5							11.4			
B-04 B-04	2.0							11.4			
B-04 B-04	3.5							14.0			
<u>В-04</u> В-04	5.0							11.0			
<u>В-04</u> В-04		27	1 /	02	0.5	20	80				
	8.5	37	14	23	9.5	38	SC	13.0			
B-04	13.5							9.8			
B-04	18.5							14.9			
B-04	23.5		40		40	40		14.1			
B-04	28.5	57	19	38	19	49	GC	21.6			
B-04	33.5							17.7			
B-05	0.5							11.6			
B-05	2.0					• •		12.3			
B-05	3.5	36	23	13	19	39	SC	16.2			
B-05	5.0							14.1			

McClelland Consulting Engineers, Inc.

SUMMARY OF LABORATORY RESULTS

PAGE 2 OF 3

CLIENT Walton	Enterprises				PRO.	JECT NAME	Whole Hea	Ith School of	Medicine & H	Health Science	ces
PROJECT NUMBE	R <u>21-3942</u>	1	1		PRO.	JECT LOCA	FION Bento	nville, Arkans	as		
Borehole	Depth	Liquid Limit	Plastic Limit	Plasticity Index	Maximum Size (mm)	%<#200 Sieve	Class- ification	Water Content (%)	Dry Density (pcf)	Satur- ation (%)	Void Ratio
B-05	8.5							12.1			
B-05	13.5							12.5			
B-05	18.5							15.3			
B-05	23.5							20.2			
B-05	28.5	40	16	24	19	22	GC	28.8			
B-05	33.5							13.1			
B-06	0.5							19.7			
B-06	2.0							17.1			
B-06	3.5							9.2			
B-06	5.0	63	29	34	19	49	GC	12.2			
B-06	8.5							11.7			
B-06	13.5							13.2			
B-06	18.5							11.9			
B-07	0.5							16.4			
B-07	2.0							14.3			
B-07	3.5							11.7			
B-07	5.0							11.7			
B-07	8.5							11.1			
B-07	13.5							18.0			
B-07	18.5	53	22	31	9.5	49	GC	28.2			
B-07	23.5	00			0.0	40	00	19.0			
B-08	0.5							12.4			
B-08	2.0							13.3			
B-08	3.5							14.7			
B-08	5.0							11.4			
B-08	8.5	65	25	40	19	50	SC	19.3			
B-08	13.5	03	23	40	19	50	30	26.7			
B-08	18.5							19.8			
B-08	23.5							21.5			
B-08 B-09	0.5							21.5 9.5			
B-09 B-09	2.0	34	19	15	9.5	86	CL	9.5 14.1			
B-09 B-09	3.5	- 34	19	15	9.0	00	UL	14.1			
B-09 B-09	5.0							14.1			
B-09	8.5							10.1			
B-09	13.5	40			0.5	AE	<u> </u>	10.1			
B-09	18.5	42	20	22	9.5	45	SC	17.7			
B-09	23.5							16.7			
B-09	28.5							13.3			
B-09	33.5							15.2			
B-09	37.5							3.7			
B-10	0.5							13.2			<u> </u>
B-10	2.0	34	17	17	25	79	CL	18.9			
B-10	3.5							12.1			

McClelland Consulting Engineers, Inc. 1580 East Stearns Street

SUMMARY OF LABORATORY RESULTS

PAGE 3 OF 3

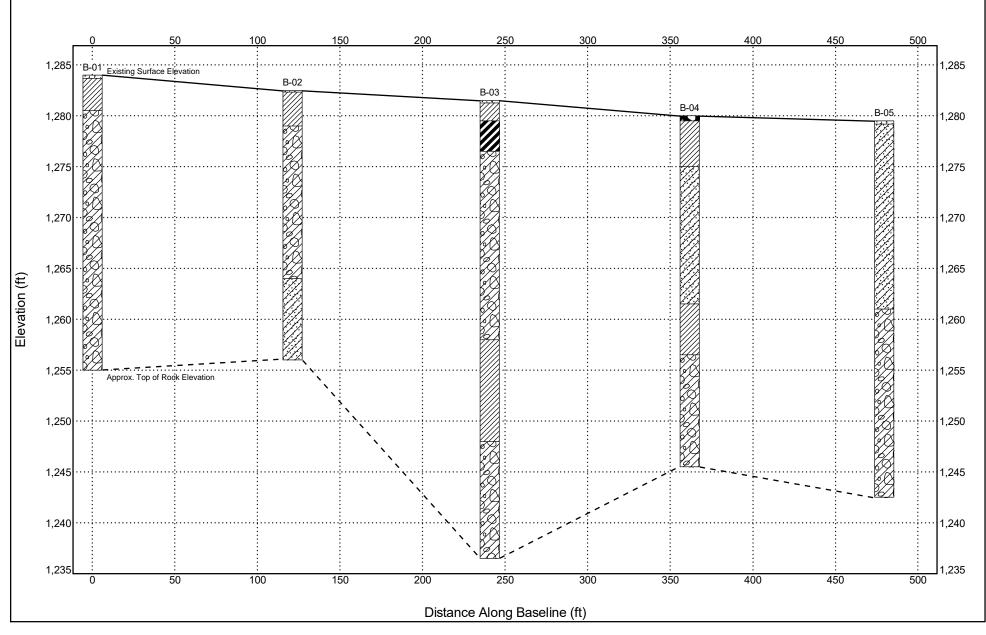
CLIENT Walton Enterprises PROJECT NAME Whole Health School of Medicine & Health Sciences PROJECT NUMBER 21-3942 **PROJECT LOCATION** Bentonville, Arkansas Dry Density Maximum Water Satur-%<#200 Liquid Plastic Plasticity Class-Void Borehole Depth Size Content ation Limit Limit Index Sieve ification Ratio (mm) (%) (pcf) (%) B-10 5.0 9.9 B-10 8.5 14.6 22 77 B-10 13.5 60 38 4.75 СН 17.4 B-10 18.5 13.7 B-10 23.5 52 22 30 19 42 GC 35.1 B-10 28.5 14.9 B-10 33.5 13.0 B-11 0.5 18.8 11.7 B-11 2.0 B-11 3.5 35 19 16 19 50 GC 10.6 B-11 5.0 11.1 B-11 8.5 10.0 B-11 13.5 8.7 B-11 18.5 10.6 B-11 23.5 21.0 B-12 0.5 9.2 7.9 2.0 B-12 B-12 3.5 9.0 B-12 5.0 8.8 24 B-12 8.5 47 23 9.5 57 CL 16.6 B-12 13.5 24.0 B-12 18.5 17.5 B-12 23.5 14.7 B-12 28.5 17.6 22.3 B-13 0.5 B-13 2.0 15.4 B-13 3.5 39 19 20 9.5 51 CL 11.3 B-13 13.3 5.0 B-13 8.5 12.0 B-13 13.5 12.2 B-13 18.5 13.8 B-13 23.5 13.9 28.5 19.4 B-13 B-13 33.5 11.8

Appendix D: Subsurface Diagrams

THE

DEF

SUBSURFACE DIAGRAM


McClelland Consulting Engineers, Inc. 1580 East Stearns Street Fayetteville, AR 72703

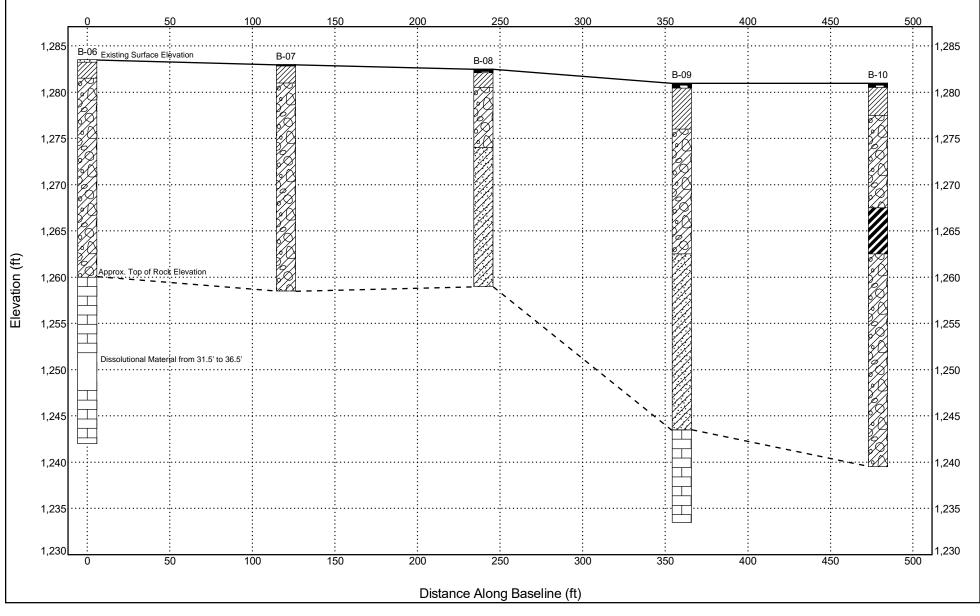
CLIENT Walton Enterprises

PROJECT NUMBER 21-3942

PROJECT NAME Whole Health School of Medicine & Health Sciences

PROJECT LOCATION Bentonville, Arkansas

SUBSURFACE DIAGRAM


McClelland Consulting Engineers, Inc. 1580 East Stearns Street Fayetteville, AR 72703

CLIENT Walton Enterprises

PROJECT NAME Whole Health School of Medicine & Health Sciences

PROJECT NUMBER 21-3942

PROJECT LOCATION Bentonville, Arkansas

CLIENT Walton Enterprises PROJECT NAME Whole Health School of Medicine & Health Sciences PROJECT NUMBER _21-3942 **PROJECT LOCATION** Bentonville, Arkansas 20 40 60 80 100 120 140 160 180 200 220 240 1,285 1,285 B-11 Existing Surface Elevation B-12 B-13 5 // 1,280 1,280 1,275 1,275 1,270 1,270 Elevation (ft) 1,265 1,265 1,260 1,260 Ø 1,255 1,255 6 Approx. Top of Rock Elevation 1,250 1,250 Þ_j 1,245 1,245 6 1,240 1,240 80 200 220 240 0 20 40 60 100 120 140 160 180 Distance Along Baseline (ft)

SUBSURFACE DIAGRAM

CONSULTING DESIGNED TO SERVE ENGINEERS, INC. McClelland Consulting Engineers, Inc. 1580 East Stearns Street Fayetteville, AR 72703 Telephone: 479.587.1303