SECTION 232116 - HYDRONIC PIPING SPECIALTIES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Hydronic specialty valves.
- 2. Air vents.
- 3. Expansion tanks and fittings.
- 4. Air/dirt separators and purgers.
- 5. Strainers.
- 6. Flexible connectors.

B. Related Requirements:

- 1. Section 230516 "Expansion Fittings and Loops for HVAC Piping" for expansion fittings and loops.
- 2. Section 230523.11 "Globe Valves for HVAC Piping" for specification and installation requirements for globe valves common to most piping systems.
- 3. Section 230523.12 "Ball Valves for HVAC Piping" for specification and installation requirements for ball valves common to most piping systems.
- 4. Section 230523.13 "Butterfly Valves for HVAC Piping" for specification and installation requirements for butterfly valves common to most piping systems.
- 5. Section 230523.14 "Check Valves for HVAC Piping" for specification and installation requirements for check valves common to most piping systems.
- 6. Section 230523.15 "Gate Valves for HVAC Piping" for specification and installation requirements for gate valves common to most piping systems.
- 7. Section 230923 "Direct Digital Control (DDC) System for HVAC" for automatic control valve and sensor specifications, installation requirements, and locations.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product:

- 1. Include construction details and material descriptions for hydronic piping specialties.
- 2. Include rated capacities, operating characteristics, and furnished specialties and accessories.
- 3. Include flow and pressure drop curves based on manufacturer's testing for calibrated-orifice balancing valves and automatic flow-control valves.

1.3 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For hydronic piping specialties to include in emergency, operation, and maintenance manuals.

1.4 MAINTENANCE MATERIAL SUBMITTALS

A. Differential Pressure Meter: For each type of balancing valve and automatic flow control valve, include flowmeter, probes, hoses, flow charts, and carrying case.

1.5 QUALITY ASSURANCE

- A. Pipe Welding: Qualify procedures and operators in accordance with ASME BPVC, Section IX.
- B. Pressure-relief and safety-relief valves and pressure vessels bear the appropriate ASME label. Fabricate and stamp air separators and expansion tanks to comply with ASME BPVC, Section VIII, Division 1.

PART 2 - PRODUCTS

2.1 HYDRONIC SPECIALTY VALVES

- A. Bronze, Calibrated-Orifice, Balancing Valves:
 - 1. Body: Bronze, ball or plug type with calibrated orifice or venturi.
 - 2. Ball: Brass or stainless steel.
 - 3. Plug: Resin.
 - 4. Seat: PTFE.
 - 5. End Connections: Threaded or socket.
 - 6. Pressure Gauge Connections: Integral seals for portable differential pressure meter.
 - 7. Handle Style: Lever, with memory stop to retain set position.
 - 8. CWP Rating: Minimum 125 psig.
 - 9. Maximum Operating Temperature: 250 deg F.
- B. Cast-Iron or Steel, Calibrated-Orifice, Balancing Valves:
 - 1. Body: Cast-iron or steel body, ball, butterfly, plug, or globe pattern with calibrated orifice or venturi.
 - 2. Ball: Brass or stainless steel.
 - 3. Stem Seals: EPDM O-rings.
 - 4. Disc: Glass- and carbon-filled PTFE.
 - 5. Seat: PTFE.
 - 6. End Connections: Flanged or grooved.
 - 7. Pressure Gauge Connections: Integral seals for portable differential pressure meter.
 - 8. Handle Style: Lever, with memory stop to retain set position.
 - 9. CWP Rating: Minimum 125 psig.
 - 10. Maximum Operating Temperature: 250 deg F.
- C. Diaphragm-Operated, Pressure-Reducing Valves: ASME labeled.
 - 1. Body: Bronze or brass.
 - 2. Disc: EPDM.
 - 3. Seat: Brass

- 4. Stem Seals: EPDM O-rings.
- 5. Diaphragm: EPDM.
- 6. Low inlet-pressure check valve.
- 7. Inlet Strainer: removable without system shutdown.
- 8. Valve Seat and Stem: Noncorrosive.
- 9. Valve Size and Capacity: As indicated on Drawings.
- 10. Operating Pressure: Factory set and field adjustable.

D. Diaphragm-Operated Pressure-Relief Valves: ASME labeled.

- 1. Body: Bronze or brass.
- 2. Disc: Brass
- 3. Seat: Brass
- 4. Stem Seals: EPDM O-rings.
- 5. Diaphragm: EPDM.
- 6. Valve Seat and Stem: Noncorrosive.
- 7. Valve Size, Capacity, and Operating Pressure: Comply with ASME BPVC, Section IV, and selected to suit system in which installed, with operating pressure and capacity factory set and field adjustable.

E. Automatic Flow-Control Valves:

- 1. Body: Brass or ferrous metal.
- 2. Combination Assemblies: Include bronze or brass-alloy ball valve.
- 3. Identification Tag: Marked with zone identification, valve number, and flow rate.
- 4. Size and Capacity: For each application, provide a valve with rated capacity equal to or greater than capacity of device being served.
- 5. Performance: Maintain constant flow within plus or minus 10 percent, regardless of system pressure fluctuations.
- 6. Minimum CWP Rating: 175 psig.
- 7. Maximum Operating Temperature: 200 deg F

2.2 AIR VENTS

A. Manual Air Vents:

- 1. Body: Bronze.
- 2. Internal Parts: Nonferrous.
- 3. Operator: Screwdriver or thumbscrew.
- 4. Inlet Connection: NPS 1/2.
- 5. Discharge Connection: NPS 1/8.
- 6. CWP Rating: 150 psig.
- 7. Maximum Operating Temperature: 225 deg F.

B. Automatic Air Vents:

- 1. Body: Bronze or cast iron.
- 2. Internal Parts: Nonferrous.
- 3. Operator: Noncorrosive metal float.
- 4. Inlet Connection: NPS 1/2.

- 5. Discharge Connection: NPS 1/4.
- 6. CWP Rating: 150 psig.
- 7. Maximum Operating Temperature: 240 deg F.

2.3 EXPANSION TANKS AND FITTINGS

A. Expansion Tanks with Direct Air/Water Interface:

- 1. Tank: Welded steel, rated for 125 psig working pressure and 375 deg F maximum operating temperature, with taps in bottom of tank for tank fitting and taps in end of tank for gauge glass. Tanks are factory tested after taps are fabricated and labeled in accordance with ASME BPVC, Section VIII, Division 1.
- 2. Air-Control Tank Fitting: Cast-iron body, copper-plated tube, brass vent tube plug, and stainless steel ball check, 100 gal. unit only; sized for expansion tank diameter. Provide tank fittings for 125 psig working pressure and 250 deg F maximum operating temperature.
- 3. Tank Drain Fitting: Brass body, nonferrous internal parts; 125 psig working pressure and 240 deg F maximum operating temperature; constructed to admit air to expansion tank, drain water, and close off system.
- 4. Gauge Glass: Full height with dual manual shutoff valves, 3/4-inch diameter gauge glass, and slotted-metal glass guard.

B. Diaphragm-Type ASME Expansion Tanks:

- 1. Tank: Welded steel, rated for 125 psig working pressure and 375 deg F maximum operating temperature. Factory test after taps are fabricated and supports installed and are labeled in accordance with ASME BPVC, Section VIII, Division 1.
- 2. Diaphragm: Securely sealed into tank to separate air charge from system water to maintain required expansion capacity.
- 3. Air-Charge Fittings: Schrader valve, stainless steel with EPDM seats.

C. Bladder-Type ASME Expansion Tanks:

- 1. Tank: Welded steel, rated for 125 psig working pressure and 375 deg F maximum operating temperature. Factory test after taps are fabricated and supports installed and are labeled in accordance with ASME BPVC, Section VIII, Division 1.
- 2. Bladder: Securely sealed into tank to separate air charge from system water to maintain required expansion capacity. Field-replaceable bladder
- 3. Air-Charge Fittings: Schrader valve, stainless steel with EPDM seats.

D. Diaphragm-Type Non-ASME Expansion Tanks:

- 1. Tank: Carbon steel, non-ASME constructed, rated for minimum 100 psig working pressure at minimum 200 deg F maximum operating temperature.
- 2. Diaphragm: Securely sealed into tank to separate air charge from system water to maintain required expansion capacity.
- 3. Air-Charge Fittings: Schrader valve, stainless steel with EPDM seats.

2.4 AIR/DIRT SEPARATORS AND PURGERS

A. Coalescing-Type Air and Dirt Separators:

- 1. Tank: Fabricated steel tank; ASME constructed and stamped for 125 psig working pressure and 270 deg F maximum operating temperature.
- 2. Coalescing Medium: Stainless steel
- 3. Air Vent: Threaded to top of separator.
- 4. Inline Inlet and Outlet Connections: Threaded for NPS 2 (DN 50) and smaller; Class 150 flanged connections for NPS 2-1/2 and larger.
- 5. Blowdown Connection: Threaded to bottom of separator.
- 6. Size: Match system flow capacity.

B. Tangential-Type Air Separators:

- 1. Tank: Welded steel; ASME constructed and labeled for 125 psig minimum working pressure and 375 deg F maximum operating temperature.
- 2. Air Collector Tube: Perforated stainless steel, constructed to direct released air into expansion tank.
- 3. Tangential Inlet and Outlet Connections: Threaded for NPS 2 and smaller; flanged connections for NPS 2-1/2 and larger.
- 4. Blowdown Connection: Threaded.
- 5. Size: Match system flow capacity.

C. In-Line Air Separators:

- 1. Tank: One-piece cast iron with an integral weir constructed to decelerate system flow to maximize air separation.
- 2. Maximum Working Pressure: Up to 175 psig.
- 3. Maximum Operating Temperature: Up to 300 deg F.

D. Air Purgers:

- 1. Body: Cast iron with internal baffles that slow the water velocity to separate the air from solution and divert it to the vent for quick removal.
- 2. Maximum Working Pressure: 150 psig.
- 3. Maximum Operating Temperature: 250 deg F.

2.5 STRAINERS

A. Y-Pattern Strainers:

- 1. Body: ASTM A126, Class B, cast iron with bolted cover and bottom drain connection.
- 2. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.
- 3. Strainer Screen: Stainless steel 40 mesh strainer, or perforated stainless steel basket.
- 4. CWP Rating: 125 psig.

B. Basket Strainers:

- 1. Body: ASTM A126, Class B, high-tensile cast iron with bolted cover and bottom drain connection.
- 2. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.
- 3. Strainer Screen: 40mesh startup strainer and perforated stainless steel basket with 50 percent free area.
- 4. CWP Rating: 125 psig.

C. T-Pattern Strainers:

- 1. Body: Ductile or malleable iron with removable access coupling and end cap for strainer maintenance.
- 2. End Connections: Grooved ends.
- 3. Strainer Screen: 40 mesh startup strainer and perforated stainless steel basket with 57 percent free area.
- 4. CWP Rating: 750 psig.

2.6 FLEXIBLE CONNECTORS

A. Stainless Steel Bellows, Flexible Connectors:

- 1. Body: Stainless steel bellows with woven, flexible, bronze, wire-reinforcing protective jacket.
- 2. End Connections: Threaded or flanged to match equipment connected.
- 3. Performance: Capable of 3/4-inch misalignment.
- 4. CWP Rating: 150 psig.
- 5. Maximum Operating Temperature: 250 deg F.

B. Spherical, Rubber, Flexible Connectors:

- 1. Body: Fiber-reinforced rubber body.
- 2. End Connections: Steel flanges drilled to align with Classes 150 and 300 steel flanges.
- 3. Performance: Capable of misalignment.
- 4. CWP Rating: 150 psig.
- 5. Maximum Operating Temperature: 250 deg F.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine all piping specialties for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
- B. Examine threads on all devices for form and cleanliness.

- C. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.
- D. Do not attempt to repair defective piping specialties; replace with new devices. Remove defective piping specialties from site.

3.2 INSTALLATION OF VALVES

- A. Install calibrated-orifice balancing valve at each branch connection to return main.
- B. Install calibrated-orifice, balancing valve in the return pipe of each heating or cooling terminal.
- C. Install pressure-reducing valves at makeup-water connection to regulate system fill pressure.
- D. Install pressure-relief and safety-relief valves at hot-water generators and elsewhere as required by ASME BPVC. Pipe drain to nearest floor drain or as indicated on Drawings. Comply with ASME BPVC, Section VIII, Division 1, for installation requirements.

3.3 HYDRONIC SPECIALTIES INSTALLATION

- A. Install manual air vents at high points in piping, at heat-transfer coils, and elsewhere as required for system air venting.
- B. Install automatic air vents at high points of system piping in mechanical equipment rooms only.
 - 1. Provide air outlet drain line full size of air outlet to floor drain or to other point indicated on Drawings.
- C. Install manual vents at heat-transfer coils and elsewhere as required for air venting.
- D. Install in-line air separators in pump suction. Install drain valve on air separators NPS 2 and larger.
- E. Install tangential air separator in pump suction. Install blowdown piping with gate or full-port ball valve full size of separator outlet; extend full size to nearest floor drain.
- F. Install expansion tanks having direct air/water interface above the air separator or air purger. Install tank fitting in tank bottom and charge tank. Use manual vent for initial fill to establish proper water level in tank.
 - 1. Install tank fittings that are shipped loose.
 - 2. Support tank from floor or structure above with sufficient strength to carry weight of tank, piping connections, and fittings, plus tank full of water. Do not overload building components and structural members.
 - 3. Install piping from air separator or air purger to expansion tank with a 2 percent upward slope toward tank to avoid air entrapment.
- G. Install diaphragm- or bladder-type expansion tanks on the floor.

Vent and purge air from hydronic system, and ensure that tank is properly charged with air to H. suit system Project requirements. END OF SECTION 232116 D37545N0 232116 - 8 AR DPA III Camden