SECTION 230548 - VIBRATION AND SEISMIC CONTROLS FOR HVAC

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Elastomeric isolation pads.
 - 2. Elastomeric isolation mounts.
 - 3. Restrained elastomeric isolation mounts.
 - 4. Open-spring isolators.
 - 5. Housed-spring isolators.
 - 6. Restrained-spring isolators.
 - 7. Housed-restrained-spring isolators.
 - 8. Pipe-riser resilient support.
 - 9. Resilient pipe guides.
 - 10. Air-spring isolators.
 - 11. Restrained-air-spring isolators.
 - 12. Elastomeric hangers.
 - 13. Spring hangers.
 - 14. Snubbers.
 - 15. Restraints rigid type.
 - 16. Restraints cable type.
 - 17. Restraint accessories.
 - 18. Post-installed concrete anchors.
 - 19. Concrete inserts.
 - 20. Vibration isolation equipment bases.
 - 21. Restrained isolation roof-curb rails.
- B. Related Requirements:
 - 1. Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment" for devices for plumbing equipment and systems.

1.2 DEFINITIONS

- A. Designated Seismic System: An HVAC component that requires design in accordance with ASCE/SEI 7, Ch. 13, and for which the Component Importance Factor is greater than 1.0.
- B. IBC: International Building Code.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include rated load, rated deflection, and overload capacity for each vibration isolation device.
 - 2. Include load rating for each wind-force-restraint fitting and assembly.
 - 3. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of vibration isolation device and seismic- and wind-force restraint component.
 - 4. Annotate types and sizes of seismic restraints and accessories, complete with listing markings or report numbers and load rating in tension and compression as evaluated by an agency acceptable to authorities having jurisdiction.
 - 5. Annotate to indicate application of each product submitted and compliance with requirements.
 - 6. Interlocking Snubbers: Include ratings for horizontal, vertical, and combined loads.
- B. Shop Drawings:
 - 1. Detail fabrication and assembly of equipment bases.
 - 2. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
- C. Delegated Design Submittals:
 - 1. For each seismic-restraint and wind-load protection device, including seismic-restrained mounting, seismic restraint, seismic-restraint accessory, concrete anchor and insert that is required by this Section or is indicated on Drawings, submit the following:
 - a. Seismic and Wind-Load Restraint, and Vibration Isolation Base Selection: Select vibration isolators, seismic and wind-load restraints, and vibration isolation bases complying with performance requirements, design criteria, and analysis data.
 - b. Riser Supports: Include riser diagrams and calculations showing anticipated expansion and contraction at each support point, initial and final loads on building structure, spring deflection changes, and seismic loads. Include certification by professional engineer that riser system was examined for excessive stress and that none exists.
 - c. Concrete Anchors and Inserts: Include calculations showing anticipated seismic and wind loads. Include certification that device is approved by an NRTL for seismic reinforcement use.
 - d. Seismic Design Calculations: Submit all input data and loading calculations prepared under "Seismic Design Calculations" Paragraph in "Performance Requirements" Article.
 - e. Wind-Load Design Calculations: Submit all static and dynamic loading calculations prepared under "Wind-Load Design Calculations" Paragraph in "Performance Requirements" Article.

- f. Qualified Professional Engineer: All designated-design submittals for seismic- and wind-restraint calculations are to be signed and sealed by qualified professional engineer responsible for their preparation.
- 2. Seismic-and Wind Restraint Detail Drawing:
 - a. Design Analysis: To support selection and arrangement of seismic and wind restraints. Include calculations of combined tensile and shear loads.
 - b. Details: Indicate fabrication and arrangement. Detail attachments of restraints to restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices.
 - c. Coordinate seismic-restraint and vibration isolation details with wind-restraint details required for equipment mounted outdoors. Comply also with requirements in other Sections for equipment mounted outdoors.
- 3. All delegated design submittals for seismic- and wind-restraint detail Drawings are to be signed and sealed by qualified professional engineer responsible for their preparation.
- 4. Product Listing, Preapproval, and Evaluation Documentation: By an agency acceptable to authorities having jurisdiction, showing maximum ratings of restraint items and basis for approval (tests or calculations).
- 5. Design Calculations for Vibration Isolation Devices: Calculate static and dynamic loading due to equipment weight and operating forces required to select proper vibration isolators, and to design vibration isolation bases.
- 6. Riser Supports: Include riser diagrams and calculations showing anticipated expansion and contraction at each support point, initial and final loads on building structure, and spring deflection changes. Include certification that riser system was examined for excessive stress and that none exists.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Show coordination of vibration isolation device installation and seismic bracing for HVAC piping and equipment with other systems and equipment in the vicinity, including other supports and restraints, if any.
- B. Qualification Data: For professional engineer and testing agency.
- C. Welding certificates.
- D. Air-Spring Isolator Performance Certification: Include natural frequency, load, and damping test data.
- E. Field quality-control reports.
- F. Seismic Qualification Data: Provide special certification for designated seismic systems as indicated in ASCE/SEI 7-16 Paragraph 13.2.2, "Special Certification Requirements for Designated Seismic Systems" for all Designated Seismic Systems identified as such on Drawings or in the Specifications.

- 1. Provide equipment manufacturer's written certification for each designated active mechanical seismic device and system, stating that it will remain operable following the design earthquake. Certification must be based on requirements of ASCE/SEI 7 and AHRI 1270, including shake table testing per ICC-ES AC156 or a similar nationally recognized testing standard procedure acceptable to authorities having jurisdiction or ASCE/SEI 7-16.
- 2. Provide equipment manufacturer's written certification that components with hazardous contents maintain containment following the design earthquake by methods required in ASCE/SEI 7-16.
- 3. Submit evidence demonstrating compliance with these requirements for approval to authorities having jurisdiction after review and acceptance by a licensed professional engineer.
- 4. The following HVAC systems and components are Designated Seismic Systems and require written special certification of seismic qualification by manufacturer:
 - a. Boilers
 - b. Chiller and Dry Cooler Support Frames
 - c. Heat Exchanger Supports
 - d. AHU's, Exhaust Fans, Air Cooled Condensing Units and Heat Recovery Units
 - e. Expansion Tanks and Pumps
 - f. Compressed Air Tanks
 - g. Chemical and Glycol Tanks
 - h. Water Heaters
 - i. Nitrogen Bottle Racks
- G. Wind-Force Performance Certification: Provide special certification for HVAC components subject to high wind exposure and impact damage and designated on Drawings or in the Specifications to require wind-force performance certification.
 - 1. Provide equipment manufacturer's written certification for each designated HVAC device, stating that it will remain in place and operable following the design wind event and comply with all requirements of authorities having jurisdiction.
 - 2. Provide manufacturer's written certification for each designated louver, damper, or similar device, stating that it will remain in place and protect opening from penetration of windborne debris and comply with all requirements of authorities having jurisdiction.
 - 3. Certification must be based on ICC-ES or similar nationally recognized testing standard procedures acceptable to authorities having jurisdiction.
 - 4. The following HVAC systems and components require special certification for high wind performance. Written special certification of resistance to the effects of high wind force and impact damage must be provided by manufacturer:
 - a. Exterior AHU's, Exhaust Fans, Air Cooled Condensing Units and Heat Recovery Units
 - b. Chiller and Dry Cooler Support Frames
 - c. Exterior Nitrogen Bottle Racks
 - d. Exterior Chemical Tanks

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For restrained-air-spring isolators to include in operation and maintenance manuals.

1.6 QUALITY ASSURANCE

- A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct testing indicated, be an NRTL as defined by OSHA in 29 CFR 1910.7, and be acceptable to authorities having jurisdiction.
- B. Welding Qualifications: Qualify procedures and personnel in accordance with AWS D1.1/D1.1M, "Structural Welding Code Steel."
- C. Seismic-and Wind-Load Restraint Device Load Ratings: Devices to be tested and rated in accordance with applicable code requirements and authorities having jurisdiction. Devices to be listed by a nationally recognized third party that requires periodic follow-up inspections and has a listing directory available to the public. Provide third-party listing by one or more of the following: FM Approvalsan agency acceptable to authorities having jurisdiction.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design seismic and wind- load control system.
 - 1. Seismic and Wind-Load Performance: Equipment to withstand the effects of earthquake motions and high wind events determined in accordance with ASCE/SEI 7-16.
- B. Seismic Design Calculations:
 - 1. Perform calculations to obtain force information necessary to properly select seismicrestraint devices, fasteners, and anchorage. Perform calculations using methods acceptable to applicable code authorities and as presented in ASCE/SEI 7-16Where "ASCE/SEI 7" is used throughout this Section, it is to be understood that the edition referred to in this subparagraph is the edition intended as reference throughout the Section Text.
 - a. Data indicated below to be determined by Delegated Design Contractor must be obtained by Contractor and must be included in individual component submittal packages.
 - b. Coordinate seismic design calculations with wind-load calculations for equipment mounted outdoors. Comply with requirements in other Sections in addition to those in this Section for equipment mounted outdoors.
 - 2. Calculation Factors, ASCE/SEI 7-16, Ch. 13 Seismic Design Requirements for Nonstructural Components: All section, paragraph, equation, and table numbers refer to ASCE/SEI 7-16 unless otherwise noted.

- a. Horizontal Seismic Design Force F_p : Value is to be calculated by Delegated Design Contractor using Equation 13.3-1. Factors below must be obtained for this calculation:
 - 1) S_{DS} = Spectral Acceleration: Refer to Structural Drawings
 - 2) $a_p = \text{Component Amplification Factor: Refer to ASCE/SEI 7-16}$
 - 3) I_p = Component Importance Factor: 1.5 for components affecting Life Safety and 1.0 for others
 - 4) W_p = Component Operating Weight: For each component refer to schedule.
 - 5) R_p = Component Response Modification Factor: Refer to ASCE/SEI 7-16
 - 6) z = Height in Structure of Point of Attachment of Component for Base: Determine from Project Drawings for each component by Delegated Design Contractor. For items at or below the base, "z" to be taken as zero.
 - h = Average Roof Height of Structure for Base: Determine from Project Drawings by Delegated Design Contractor.
- b. Vertical Seismic Design Force: Calculated by Delegated Design Contractor using method explained in ASCE/SEI 7-16, Paragraph 13.3.1.2.
- c. Seismic Relative Displacement D_{pl} : Calculate by Delegated Design Contractor using methods explained in ASCE/SEI 7-10, Paragraph 13.3.2. Factors below must be obtained for this calculation:
 - 1) D_p = Relative Seismic Displacement that Each Component Must Be Designed to Accommodate: Calculate by Delegated Design Contractor in accordance with ASCE/SEI 7-10, Paragraph 13.3.2.
 - 2) $I_e =$ Seismic Importance Factor: Refer to Structural Drawings
- d. Component Fundamental Period T_p: Calculated by Delegated Design Contractor using methods explained in ASCE/SEI 7-16, Paragraph 13.3.3. Factors below must be obtained for this calculation:
 - W_p = Component Operating Weight: Determined by Contractor from Project Drawings and manufacturer's data.
 - 2) g = Gravitational Acceleration: 32.17 fps2.
 - 3) K_p = Combined Stiffness of Component, Supports, and Attachments: Determined by delegated design seismic engineer.
- C. Wind-Load Design Calculations:
 - 1. Perform calculations to obtain force information necessary to properly select wind-loadrestraint devices, fasteners, and anchorage. Perform calculations using methods acceptable to applicable code authorities and as presented in ASCE/SEI 7-16. Where "ASCE/SEI 7" is used throughout this Section, it is to be understood that the edition referred to in this subparagraph is intended as referenced throughout the Section Text unless otherwise noted.
 - a. Data indicated below that are specific to individual pieces of equipment must be obtained by Contractor and must be included in individual component submittal packages.

- b. Coordinate design wind-load calculations with seismic load calculations for equipment requiring both seismic and wind-load reinforcement. Comply with requirements in other Sections in addition to those in this Section for equipment mounted outdoors.
- 2. Design wind pressure "p" for external sidewall-mounted equipment such as louvers is to be calculated by Delegated Design Contractor using methods in ASCE/SEI 7-16, Ch. 30. Perform calculations in accordance with one of the following, as applicable:
 - a. PART 1: Low-Rise Buildings.
 - b. PART 2: Low-Rise Buildings (Simplified).
 - c. PART 3: Buildings with "h" less than 60 feet.
 - d. PART 4: Buildings with "h" greater than 60 feet and less than 160 feet.
 - e. PART 5: Open Buildings.
- 3. Design wind pressure "p" for rooftop equipment is to be calculated by Delegated Design Contractor using methods in ASCE/SEI 7-16, Ch. 30, PART 6: Building Appurtenances and Rooftop Structures and Equipment.
 - a. Risk Category: See Structural Drawings.
 - b. h = Mean Roof Height: See Drawings.
 - c. V = Basic Wind Speed: See Structural Drawings.
 - d. Kd = Wind Directionality Factor See Structural Drawings.
 - e. Exposure Category: See Structural Drawings.
 - f. K_{zt} = Topographic Factor: See Structural Drawings.
 - g. K_e = Ground Elevation Factor: See Structural Drawings.
 - h. K_z = Velocity Pressure Exposure Coefficient (Evaluated at Height z): See Structural Drawings.
 - i. K_h = Velocity Pressure Exposure Coefficient (Evaluated at Height h): See Structural Drawings.
 - j. q_z = Velocity Pressure: Value calculated by delegated wind-load design Contractor using methods detailed in ASCE/SEI 7-16 Section 26.10.1 or other source approved by authorities having jurisdiction.
 - k. q_h = Velocity Pressure: Value calculated by delegated wind-load design Contractor using methods detailed in ASCE/SEI 7-16 Section 26.10.1 or other source approved by authorities having jurisdiction.
 - 1. G = Gust-Effect Factor: See Structural Drawings.
 - m. Enclosure Classification: See Structural Drawings.
 - n. GC_{pi} = Internal Pressure Coefficient: See Structural Drawings.
- D. Consequential Damage: Provide additional seismic restraints for suspended HVAC components or anchorage of floor-, roof-, or wall-mounted HVAC components as indicated in ASCE/SEI 7-16 so that failure of a non-essential or essential HVAC component will not cause failure of any other essential architectural, mechanical, or electrical building component.
- E. Fire/Smoke Resistance: Seismic and wind-load restraint devices that are not constructed of ferrous metals must have a maximum flame-spread index of 25 and maximum smoke-developed index of 50 when tested by an NRTL in accordance with ASTM E84 or UL 723, and be so labeled.

- F. Component Supports:
 - 1. Load ratings, features, and applications of all reinforcement components must be based on testing standards of a nationally recognized testing agency.
 - 2. All component support attachments must comply with force and displacement resistance requirements of ASCE/SEI 7-16 Section 13.6.

2.2 ELASTOMERIC ISOLATION PADS

- A. Elastomeric Isolation Pads:
 - 1. Source Limitations: Obtain elastomeric isolation pads from single manufacturer.
 - 2. Fabrication: Single or multiple layers of sufficient durometer stiffness for uniform loading over pad area.
 - 3. Size: Factory or field cut to match requirements of supported equipment.
 - 4. Pad Material: Oil and water resistant with elastomeric properties. Neoprene rubber, silicone rubber, or other elastomeric material.
 - 5. Surface Pattern: Smooth, ribbed, or waffle pattern.
 - 6. Infused nonwoven cotton or synthetic fibers.
 - 7. Load-bearing metal plates adhered to pads.
 - 8. Sandwich-Core Material: elastomeric
 - a. Surface Pattern: Smooth, ribbed, or waffle pattern.
 - b. Infused nonwoven cotton or synthetic fibers.

2.3 ELASTOMERIC ISOLATION MOUNTS

- A. Double-Deflection, Elastomeric Isolation Mounts:
 - 1. Source Limitations: Obtain double-deflection, elastomeric isolation mounts from single manufacturer.
 - 2. Mounting Plates:
 - a. Top Plate: Encapsulated steel load transfer top plates, factory drilled and threaded with threaded studs or bolts.
 - b. Baseplate: Encapsulated steel bottom plates with holes provided for anchoring to support structure.
 - 3. Elastomeric Material: Molded, oil- and water-resistant neoprene rubber, silicone rubber, or other elastomeric material.

2.4 RESTRAINED ELASTOMERIC ISOLATION MOUNTS

- A. Restrained Elastomeric Isolation Mounts:
 - 1. Source Limitations: Obtain restrained elastomeric isolation mounts from single manufacturer.

- 2. Description: All-directional isolator with seismic restraints containing two separate and opposing elastomeric elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.
 - a. Housing: Cast-ductile iron or welded steel.
 - b. Elastomeric Material: Molded, oil-resistant rubber, neoprene, or other elastomeric material.

2.5 OPEN-SPRING ISOLATORS

- A. Freestanding, Laterally Stable, Open-Spring Isolators:
 - 1. Source Limitations: Obtain freestanding, laterally stable, open-spring isolators from single manufacturer.
 - 2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 6. Baseplates: Factory-drilled steel plate for bolting to structure with an elastomeric isolator pad attached to the underside. Baseplates limit floor load to 500 psig.
 - 7. Top Plate and Adjustment Bolt: Threaded top plate with adjustment bolt and cap screw to fasten and level equipment.

2.6 HOUSED-SPRING ISOLATORS

- A. Freestanding, Laterally Stable, Open-Spring Isolators in Two-Part Telescoping Housing:
 - 1. Source Limitations: Obtain freestanding, laterally stable, open-spring isolators in twopart telescoping housing from single manufacturer.
 - 2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 6. Two-Part Telescoping Housing: A steel top and bottom frame separated by an elastomeric material and enclosing the spring isolators.
 - a. Drilled base housing for bolting to structure with an elastomeric isolator pad attached to the underside. Bases limit floor load to 500 psig.
 - b. Top housing with attachment and leveling bolt.

2.7 RESTRAINED-SPRING ISOLATORS

- A. Freestanding, Laterally Stable, Open-Spring Isolators with Vertical-Limit Stop Restraint: .
 - 1. Source Limitations: Obtain restrained-spring isolators from single manufacturer.
 - 2. Housing: Steel housing with vertical-limit stops to prevent spring extension due to weight being removed.
 - a. Base with holes for bolting to structure with an elastomeric isolator pad attached to the underside. Bases limit floor load to 500 psig.
 - b. Top plate with threaded mounting holes.
 - c. Internal leveling bolt that acts as blocking during installation.
 - 3. Restraint: Limit stop as required for equipment and authorities having jurisdiction.
 - 4. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 5. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 6. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 7. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

2.8 HOUSED-RESTRAINED-SPRING ISOLATORS

- A. Freestanding, Steel, Open-Spring Isolators with Vertical-Limit Stop Restraint in Two-Part Telescoping Housing:
 - 1. Source Limitations: Obtain freestanding, open-spring isolators with vertical-limit stop restraints from single manufacturer.
 - 2. Two-Part Telescoping Housing: A steel top and bottom frame separated by an elastomeric material and enclosing the spring isolators. Housings are equipped with non-adjustable snubbers to limit vertical movement.
 - a. Drilled base housing for bolting to structure with an elastomeric isolator pad attached to the underside. Bases limit floor load to 500 psig.
 - b. Threaded top housing with adjustment bolt and cap screw to fasten and level equipment.
 - 3. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 4. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 5. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 6. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

2.9 PIPE-RISER RESILIENT SUPPORT

- A. All-Directional, Acoustical Pipe Anchor Consisting of Two Steel Tubes Separated by a Minimum 1/2-inch-Thick Neoprene:
 - 1. Source Limitations: Obtain all-directional, acoustical pipe anchor from single manufacturer.
 - 2. Vertical-Limit Stops: Steel and neoprene vertical-limit stops arranged to prevent vertical travel in both directions.
 - 3. Maximum Load Per Support: 500 psig on isolation material providing equal isolation in all directions.

2.10 RESILIENT PIPE GUIDES

- A. Telescopic Arrangement of Two Steel Tubes or Post and Sleeve Arrangement Separated by a Minimum 1/2-inch-Thick Neoprene:
 - 1. Source Limitations: Obtain resilient pipe guides from single manufacturer.
 - 2. Factory-Set Height Guide with Shear Pin: Shear pin to be removable and reinsertable to allow for selection of pipe movement. Guides to be capable of motion to meet location requirements.

2.11 ELASTOMERIC HANGERS

- A. Elastomeric Mount in a Steel Frame with Upper and Lower Steel Hanger Rods:
 - 1. Source Limitations: Obtain elastomeric hangers from a single manufacturer.
 - 2. Frame: Steel, fabricated with a connection for an upper threaded hanger rod and an opening on the underside to allow for a maximum of 30 degrees of angular lower hanger-rod misalignment without binding or reducing isolation efficiency.
 - 3. Damping Element: Molded, oil-resistant rubber, neoprene, or other elastomeric material with a projecting bushing for the underside opening preventing steel to steel contact.

2.12 SPRING HANGERS

- A. Combination Coil-Spring and Elastomeric-Insert Hanger with Spring and Insert in Compression:
 - 1. Source Limitations: Obtain spring hangers from single manufacturer.
 - 2. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
 - 3. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 4. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 5. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 6. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

- 7. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washer-reinforced cup to support spring and bushing projecting through bottom of frame.
- 8. Adjustable Vertical Stop: Steel washer with neoprene washer "up-stop" on lower threaded rod.
- 9. Self-centering hanger-rod cap to ensure concentricity between hanger rod and support spring coil.

2.13 SNUBBERS

- A. Source Limitations: Obtain snubbers from single manufacturer.
- B. Description: Factory fabricated using welded structural-steel shapes and plates, anchor bolts, and replaceable resilient isolation washers and bushings.
 - 1. Post-Installed Concrete Anchor Bolts: Secure to concrete surface with post-installed concrete anchors. Anchors to be seismically prequalified in accordance with ACI 355.2 testing and designated in accordance with ACI 318-08 Appendix D for 2009 IBC
 - 2. Preset Concrete Inserts: Seismically prequalified in accordance with ICC-ES AC446 testing.
 - 3. Anchors in Masonry: Design in accordance with TMS 402.
 - 4. Resilient Isolation Washers and Bushings: Oil- and water-resistant neoprene.
 - 5. Resilient Cushion: Maximum 1/4-inch air gap, and minimum 1/4 inch thick.

2.14 RESTRAINTS - RIGID TYPE

- A. Source Limitations: Obtain rigid-type restraints from single manufacturer.
- B. Description: Shop- or field-fabricated bracing assembly made of AISI S110-07-S1 slotted steel channels, ANSI/ASTM A53/A53M steel pipe as per NFPA 13, or other rigid steel brace member. Includes accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; rated in tension, compression, and torsion forces.

2.15 RESTRAINTS - CABLE TYPE

- A. Source Limitations: Obtain cable-type restraints from single manufacturer.
- B. Seismic-Restraint Cables: ASTM A1023/A1023M galvanized ASTM A492 stainless steel cables. End connections made of steel assemblies with thimbles, brackets, swivel, and bolts designed for seismic-restraining cable service; with fittings attached by means of poured socket, swaged socket or mechanical (Flemish eye) loop.
- C. Restraint cable assembly with cable fittings must comply with ASCE/SEI 19. All cable fittings and complete cable assembly must maintain the minimum cable breaking force. U-shaped cable clips and wedge-type end fittings do not comply and are unacceptable.

2.16 RESTRAINT ACCESSORIES

- A. Source Limitations: Obtain restraint accessories from single manufacturer.
- B. Hanger-Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections or Reinforcing steel angle clamped to hanger rod. Non-metallic stiffeners are unacceptable.
- C. Hinged and Swivel Brace Attachments: Multifunctional steel connectors for attaching hangers to rigid channel bracings and restraint cables.
- D. Bushings for Floor-Mounted Equipment Anchor Bolts: Neoprene bushings designed for rigid equipment mountings, and matched to type and size of anchor bolts and studs.
- E. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings, and matched to type and size of attachment devices used.
- F. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.

2.17 POST-INSTALLED CONCRETE ANCHORS

- A. Mechanical Anchor Bolts:
 - 1. Source Limitations: Obtain mechanical anchor bolts from single manufacturer.
 - 2. Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength for anchor and as tested according to ASTM E488/E488M.
- B. Adhesive Anchor Bolts:
 - 1. Source Limitations: Obtain adhesive anchor bolts from single manufacturer.
 - 2. Drilled-in and capsule anchor system containing PVC or urethane methacrylate-based resin and accelerator, or injected polymer or hybrid mortar adhesive. Provide anchor bolts and hardware with zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E488/E488M.
- C. Provide post-installed concrete anchors that have been prequalified for use in wind-load applications. Post-installed concrete anchors must comply with all requirements of ASCE/SEI 7-16, Ch. 13.
 - 1. Prequalify post-installed anchors in concrete in accordance with ACI 355.2 or other approved qualification testing procedures.
 - 2. Prequalify post-installed anchors in masonry in accordance with approved qualification procedures.

- D. Expansion-type anchor bolts are not permitted for equipment in excess of 10 hp (7.46 kW) that is not vibration isolated.
 - 1. Undercut expansion anchors are permitted.

2.18 CONCRETE INSERTS

- A. Source Limitations: Obtain concrete inserts from single manufacturer.
- B. Provide preset concrete inserts that are seismically prequalified in accordance with ICC-ES AC466 testing.
- C. Comply with ANSI/MSS SP-58.

2.19 VIBRATION ISOLATION EQUIPMENT BASES

- A. Source Limitations: Obtain vibration isolation equipment bases from single manufacturer.
- B. Steel Rails: Factory-fabricated, welded, structural-steel rails.
 - 1. Design Requirements: Lowest possible mounting height with not less than 1-inch clearance above the floor. Include equipment anchor bolts and auxiliary motor slide rails.
 - a. Include supports for suction and discharge elbows for pumps.
 - 2. Structural Steel: Steel shapes, plates, and bars complying with ASTM A36/A36M. Rails to have shape to accommodate supported equipment.
 - 3. Support Brackets: Factory-welded steel brackets on frame for outrigger isolation mountings and to provide for anchor bolts and equipment support.
- C. Steel Bases: Factory-fabricated, welded, structural-steel bases and rails.
 - 1. Design Requirements: Lowest possible mounting height with not less than 1-inch clearance above the floor. Include equipment anchor bolts and auxiliary motor slide bases or rails.
 - a. Include supports for suction and discharge elbows for pumps.
 - 2. Structural Steel: Steel shapes, plates, and bars complying with ASTM A36/A36M. Bases to have shape to accommodate supported equipment.
 - 3. Support Brackets: Factory-welded steel brackets on frame for outrigger isolation mountings and to provide for anchor bolts and equipment support.
- D. Concrete Inertia Base: Factory-fabricated or field-fabricated, welded, structural-steel bases and rails ready for placement of cast-in-place concrete.
 - 1. Design Requirements: Lowest possible mounting height with not less than 1-inch clearance above the floor. Include equipment anchor bolts and auxiliary motor slide bases or rails.

- a. Include supports for suction and discharge elbows for pumps.
- 2. Structural Steel: Steel shapes, plates, and bars complying with ASTM A36/A36M. Bases to have shape to accommodate supported equipment.
- 3. Support Brackets: Factory-welded steel brackets on frame for outrigger isolation mountings and to provide for anchor bolts and equipment support.
- 4. Fabrication: Fabricate steel templates to hold equipment anchor-bolt sleeves and anchors in place during placement of concrete. Obtain anchor-bolt templates from supported equipment manufacturer.

2.20 RESTRAINED ISOLATION ROOF-CURB RAILS

- A. Source Limitations: Obtain restrained isolation roof-curb rails from single manufacturer.
- B. Description: Factory-assembled, fully enclosed, insulated, air- and watertight curb rail designed to resiliently support equipment and to withstand seismic and wind forces.
- C. Upper Frame: To provide continuous support for equipment and to be captive to resiliently resist seismic and wind forces.
- D. Lower Support Assembly: To be formed sheet metal section containing adjustable and removable steel springs that support the upper frame. Lower support assembly to have a means for attaching to building structure and a wood nailer for attaching roof materials, and to be insulated with a minimum of 2 inches of rigid, glass-fiber insulation on inside of assembly. Mount adjustable, restrained-spring isolators on elastomeric vibration isolation pads and provide access ports, for level adjustment, with removable waterproof covers at all isolator locations. Locate isolators so they are accessible for adjustment at any time during the life of the installation without interfering with integrity of roof.
- E. Snubber Bushings: All-directional, elastomeric snubber bushings at least 1/4 inch thick.
- F. Water Seal: Galvanized sheet metal with EPDM seals at corners, attached to upper support frame, extending down past wood nailer of lower support assembly, and counter flashed over roof materials.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and equipment to receive vibration isolation and seismic and wind control devices for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

- A. Multiple Pipe Supports: Secure pipes to trapeze member with clamps approved for application by an evaluation service member of ICC-ES.
- B. Hanger-Rod Stiffeners: Install where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces.
- C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength is adequate to carry present and future static wind load, and seismic loads within specified loading limits.

3.3 INSTALLATION OF VIBRATION-CONTROLWIND-LOAD CONTROL, AND SEISMIC-RESTRAINT DEVICES

- A. Provide vibration-control devices for systems and equipment where indicated in Equipment Schedules or Vibration-Control Devices Schedules, where indicated on Drawings, or where Specifications indicate they are to be installed on specific equipment and systems.
- B. Provide seismic-restraint and wind-load control devices for systems and equipment where indicated in Equipment Schedules or Seismic-Restraint Devices Schedules, where indicated on Drawings, where Specifications indicate they are to be installed on specific equipment and systems, and where required by applicable codes.
- C. Coordinate location of embedded connection hardware with supported equipment attachment and mounting points and with requirements for concrete reinforcement and formwork specified in Section 033000 "Cast-in-Place Concrete."
- D. Installation of vibration isolators wind-load restraints, must not cause any change of position of equipment, piping, or ductwork resulting in stresses or misalignment.
- E. Comply with requirements in Section 077200 "Roof Accessories" for installation of roof curbs, equipment supports, and roof penetrations.
- F. Equipment Restraints:
 - 1. Install seismic snubbers on HVAC equipment mounted on vibration isolators. Locate snubbers as close as possible to vibration isolators and bolt to equipment base and supporting structure.
 - 2. Install resilient bolt isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch.
 - 3. Install seismic-restraint, and wind-load-restraint devices using methods approved by an evaluation service member of ICC-ES that provides required submittals for component.
- G. Piping Restraints:
 - 1. Comply with requirements in MSS SP-127.
 - 2. Space lateral supports a maximum of 40 feet o.c. and longitudinal supports a maximum of 80 feet o.c.
 - 3. Brace a change of direction longer than 12 feet.

- H. Ductwork Restraints:
 - 1. Install ducts with hangers and braces designed to support the duct and to restrain against seismic forces required by applicable building codes. Comply with SMACNA's "Seismic Restraint Manual: Guidelines for Mechanical Systems."
 - 2. Space lateral supports a maximum of 40 feet o.c, and longitudinal supports a maximum of 80 feet o.c.
 - 3. Brace a change of direction longer than 12 feet.
 - 4. Select seismic-restraint devices with capacities adequate to carry static and seismic loads.
 - 5. Install cable restraints on ducts that are suspended with vibration isolators.
- I. Install seismic-and wind-load restraint cables so they do not bend across edges of adjacent equipment or building structure.
- J. Install seismic-restraint devices using methods approved by an evaluation service member of ICC-ES that provides required submittals for component.
- K. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.
- L. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.
- M. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.
- N. Mechanical Anchor Bolts:
 - 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 - 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 - 3. Wedge-Type Anchor Bolts: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors to be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
 - 4. Adhesive-Type Anchor Bolts: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.
 - 5. Set anchors to manufacturer's recommended torque, using a torque wrench.
 - 6. Install zinc-coated steel anchors for interior and stainless steel anchors for exterior applications.

3.4 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION

A. Provide flexible connections in piping systems where they cross structural seismic joints and other point where differential movement may occur. Provide adequate flexibility to accommodate differential movement as determined in accordance with ASCE/SEI 7. Comply with requirements in Section 232113 "Hydronic Piping" and Section 232116 "Hydronic Piping Specialties" for piping flexible connections.

3.5 INSTALLATION OF VIBRATION ISOLATION EQUIPMENT BASES

- A. Coordinate location of embedded connection hardware with supported equipment attachment and mounting points and with requirements for concrete reinforcement and formwork specified in Section 033000 "Cast-in-Place Concrete."
- B. Coordinate dimensions of steel equipment rails and bases, concrete inertia bases, and restrained isolation roof-curb rails with requirements of isolated equipment specified in this and other Sections. Where dimensions of these bases are indicated on Drawings, dimensions may require adjustment to accommodate actual isolated equipment.

3.6 ADJUSTING

- A. Adjust isolators after system is at operating weight.
- B. Adjust limit stops on restrained-spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.

3.7 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- C. Tests and Inspections:
 - 1. Perform tests and inspections.
 - 2. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction.
 - 3. Schedule test with Owner, through Architect, before connecting anchorage device to restrained component (unless postconnection testing has been approved), and with at least seven days' advance notice.
 - 4. Obtain Architect's approval before transmitting test loads to structure. Provide temporary load-spreading members.
 - 5. Test no fewer than four of each type and size of installed anchors and fasteners selected by Architect.
 - 6. Test to 90 percent of rated proof load of device.

- 7. Measure isolator restraint clearance.
- 8. Measure isolator deflection.
- 9. Verify snubber minimum clearances.
- 10. Test and adjust restrained-air-spring isolator controls and safeties.
- D. Remove and replace malfunctioning units and retest as specified above.
- E. Units will be considered defective if they do not pass tests and inspections.
- F. Prepare test and inspection reports.

END OF SECTION 230548